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Abstract
The cyclin dependent kinase Cdk1 controls the cell cycle, which is best understood in the model organism S. cerevisiae. 
Research performed during the past decade has significantly improved our understanding of the molecular machinery 
of the cell cycle. Approximately 75 targets of Cdk1 have been identified that control critical cell cycle events, such as 
DNA replication and segregation, transcriptional programs and cell morphogenesis. In this review we discuss currently 
known targets of Cdk1 in the budding yeast S. cerevisiae and highlight the role of Cdk1 in several crucial processes 
including maintenance of genome stability.

Introduction
In eukaryotic cells, the cell cycle is controlled by cyclin
dependent kinases (CDKs). Six conserved CDKs exist in
the budding yeast S. cerevisiae [1-7]: Cdk1 (also known as
Cdc28), Pho85 (similar to mammalian Cdk5), Kin28 (sim-
ilar to mammalian Cdk7), Ssn3 (similar to mammalian
Cdk8), and Ctk1 and the more recently identified Bur1
(both of which correspond to mammalian Cdk9). A single
CDK, Cdk1, is necessary and sufficient to drive the cell
cycle in budding yeast, but many of its functions, espe-
cially in the earlier phases of the cell cycle, are supported
by the non-essential CDK Pho85, and there exists signifi-
cant cross-talk between these kinases in regulation of e.g.
cell morphology [8]. The other CDKs are thought to
function mainly in the process of transcription [9]. In
addition to the six classical CDKs, S. cerevisiae has a dis-
tant, highly diverged CDK family member, Cak1, which is
involved in activation of several CDKs [10].

Budding yeast Cdk1 was first identified in a landmark
genetic screen for genes that control the cell cycle per-
formed by Hartwell [11,12]. It is a proline-directed kinase
that preferentially phosphorylates the consensus
sequence S/T-P-x-K/R (where × is any amino acid),
although it also phosphorylates the minimal consensus
sequence S/T-P [13], and recent work indicates that at
least in vitro Cdk1 can also phosphorylate non-SP/TP

sites [14-16]. Cdk1 substrates frequently contain multiple
phosphorylation sites that are clustered in regions of
intrinsic disorder, and their exact position in the protein
is often poorly conserved in evolution, indicating that
precise positioning of phosphorylation is not required for
regulation of the substrate [17-19]. Cdk1 interacts with
nine different cyclins throughout the cell cycle. The inter-
action with cyclins is important for activation of its
kinase activity and also for recruitment and selection of
substrates. For example, several cyclins contain a hydro-
phobic patch that binds the RXL (also known as Cy) motif
in Cdk1 substrates. This hydrophobic patch is important
for substrate selection of some cyclin-Cdk1 complexes,
like e.g. Clb5-Cdk1, while for other cyclins it helps deter-
mine the cellular localization of the cyclin-Cdk1 complex,
like e.g. Clb2-Cdk1 [20]. Significant overlap exists
between substrates that are phosphorylated by the vari-
ous cyclin-Cdk1 complexes [21], because overexpression
of a single Clb (e.g. Clb1 [22] or Clb6 [23]) can rescue the
lethality of a clb1,2,3,4,5,6Δ mutant. However, robust cell
cycle progression depends on the orderly expression of
cyclins [21,24-27], indicating that different cyclin-Cdk1
complexes are important for phosphorylation of the right
proteins at the right time.

The fact that aberrant CDK activity underpins prolifer-
ation of tumor cells makes it a highly significant research
subject [28]. Approximately 75 bona fide in vivo Cdk1 tar-
gets have been identified thus far (see additional Table 1).
However, this number is likely to be an underestimate,
because a recent study that combined specific chemical
inhibition of Cdk1 with quantitative mass spectrometry
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identified over 300 potential Cdk1 targets [17]. In this
review we discuss some of the key cell cycle processes
from the perspective of Cdk1. Because it is impossible to
discuss all these processes and targets in detail, we will
emphasize just a few of them, while discussing the others
in broader terms and referring the reader to recently pub-
lished reviews and articles for further reading.

Regulation of Cdk1
The upstream regulation of Cdk1 has been extensively
reviewed [21,29-31] and therefore we will just give a more
general summary of what is known about regulation of
Cdk1 in budding yeast. Cyclins and CDKs are well con-
served between S. cerevisiae and mammals. For instance,
human cyclins can substitute for budding yeast cyclins
[32], and human Cdc2 (Cdk1 in S. cerevisiae) can substi-
tute for Cdc2 in S. pombe [33] and for Cdk1 in S. cerevi-
siae [34], illustrating the evolutionary conservation of cell
cycle control. Cdk1 is inactive during G1 due to low con-
centrations of cyclins and the presence of the cyclin
dependent kinase inhibitors (CKIs) Sic1 and Far1 [23,35].
Its activity increases at late G1, when cyclin concentra-
tions rise and the CKIs are degraded [29]. Cdk1 activity
stays high until anaphase, when it drops because cyclins
are destroyed and CKIs are re-expressed [23,36]. This
drop in Cdk1 activity is paramount to exit from mitosis
(see section 'Cdk1 and exit from mitosis') and it resets the
cell cycle to a basic G1 state of low Cdk1 activity. As will
be discussed later, the fluctuation in Cdk1 activity serves
important functions in restricting DNA replication,
repair and segregation to specific phases of the cell cycle
and ensures irreversibility of the various phases of the cell
cycle. The most important Cdk1 regulators are discussed
below, although many more proteins can affect Cdk1
activity to a certain extent [29].
Cak1
The crystal structures of human Cdk2 and the cyclinA-
Cdk2 complex have revealed important insights in regu-
lation of CDK activity [37,38]. CDKs, like other protein
kinases, have a two-lobed structure. CDKs are completely
inactive in the absence of cyclins because (i) their active
site is blocked by the T-loop, a large, flexible loop that
rises from the C-terminal lobe, and (ii) several important
amino acid side chains in the active site are not correctly
positioned such that the phosphates of the ATP are
poorly oriented for the kinase reaction. Many kinases
autophosphorylate a site in their T-loop to relieve their
inhibition, but not CDKs. Instead, phosphorylation of the
T-loop is carried out by cyclin dependent kinase activat-
ing kinases (CAKs). Cak1, the S. cerevisiae CAK, is an
unusual kinase that lacks many of the common features
of other members of the protein kinase superfamily [39]
and that bears little homology to vertebrate CAK [40]. It
phosphorylates Cdk1 on T169 located within the T-loop,

which is thought to result in movement of the T-loop to
expose the substrate binding region and to increase the
number of contacts between Cdk1 and cyclins, thus pro-
moting the affinity of Cdk1 for cyclins [10,40-42]. Upon
cyclin binding, a highly conserved helix of the upper
kinase lobe called the PSTAIRE helix directly interacts
with the cyclin and moves inward, causing reorientation
of residues that interact with the phosphates of ATP. T-
loop phosphorylation and cyclin binding are both
required for full kinase activity. Phosphorylation levels of
the T-loop fluctuate little throughout the cell cycle in S.
cerevisiae [40,42], indicating that binding of cyclins is the
main determinant of Cdk1 activity. Phosphorylation of
T169 can be reversed by phosphatases Ptc2 and Ptc3, and
overexpression of these phosphatases in yeast mutants
harboring a temperature-sensitive cak1 allele results in
synthetic lethality [43]. However, little is known about the
physiological significance of dephosphorylation of T169
of Cdk1.
Cyclins
S. cerevisiae expresses nine cyclins that associate with
Cdk1 throughout the cell cycle: three G1 cyclins and six
B-type cyclins. The three G1 cyclins Cln1, Cln2 and Cln3
are involved in entry into S phase. Only a cln1Δ cln2Δ
cln3Δ triple knockout is inviable, indicating that any of
these cyclins can substitute for each other to pass Start
[44]. Nonetheless, the three cyclins are thought to have
different functions. Cln3 controls transcriptional pro-
grams and appears to function upstream of Cln1 and
Cln2 because it stimulates the transcription of the CLN1
and CLN2 genes [45-50] (also see Section 'Cdk1 and tran-
scriptional programs'), while Cln1 and Cln2 are impor-
tant for spindle pole body duplication and initiation of
bud morphogenesis (see sections 'Cdk1 and chromosome
segregation' and 'Cdk1 and cell morphogenesis'). Tran-
scription levels of CLN3 do not appear to fluctuate much
during the cell cycle, in contrast to protein levels [45,51],
indicating that Cln3 levels are regulated post-transcrip-
tionally. Indeed, translation of CLN3 mRNA is an impor-
tant regulatory mechanism for cell cycle entry [52,53]. In
addition, the stability of Cln3, but also Cln1 and Cln2, is
subject to post-translational modifications; Cln1,2,3 are
all phosphorylated by Cln-Cdk1 complexes, targeting
them for SCF-mediated destruction [54-56]. The expres-
sion of Cln3 is also controlled by Whi3, an RNA binding
protein that is associated with the endoplasmic reticu-
lum. It negatively regulates Cdk1 by binding CLN3
mRNA [57] and sequestering it at the ER [58], thus pre-
venting accumulation of the nuclear Cdk1-Cln3 until late
G1. Retention of Cln3-Cdk1 at the ER is also facilitated by
interaction with the HSP70-related chaperones Ssa1 and
Ssa2, while release of Cln3-Cdk1 is mediated by Ydj1,
which induces the ATPase activity of Ssa1/2, thus releas-
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ing Cln3-Cdk1 which can then enter the nucleus and
induce cell cycle entry [59].

Six B-type cyclins, Clb1-6, function after the G1 cyclins
in the cell cycle. Expression of both Clb5 and Clb6 is
induced during G1 phase, but while Clb5 is stable until
mitosis, Clb6 is degraded at the G1/S border, and this is
because Clb5 has an APC destruction box, causing it to
be degraded by the APC, while Clb6 is targeted for
destruction by the SCF upon phosphorylation by Cdk1
and Pho85 [60]. Clb5,6 are thought to be involved in
timely initiation of S phase [23] and in preventing firing
of origins of replication that have already fired [61] (also
see section 'Cdk1 and DNA replication'). Furthermore,
Clb5 is required for efficient DNA replication [62], while
Clb6 inhibits transcription of G1 programs [63,64] (also
see section 'Cdk1 and transcriptional programs'). Clb3,4
are expressed from S phase until anaphase and are
involved in DNA replication, spindle assembly, and the
G2/M-phase transition [29,65]. Clb1,2 are expressed dur-
ing the G2-M phase of the cell cycle and destroyed at the
end of M phase [29,66] and are involved in regulation of
mitotic events such as spindle elongation, but e.g. also in
bud morphogenesis by inducing the switch from polar to
isotropic bud growth [67].
CKIs
The cyclin dependent kinase inhibitors (CKIs) Far1 and
Sic1 are thought to bind cyclin-CDK complexes and pre-
vent the kinase from interacting with its substrates
[23,68-70]. The inhibitory domain of Sic1 has structural
homology to mammalian p27KIP1, although Sic1 and
p27KIP1 lack sequence homology [71]. Far1 and Sic1 are
expressed between the M-G1 and G1-S boundaries of the
cell cycle, and outside of G1 they are unstable proteins.
Far1 inhibits Cln-Cdk1 complexes at Start, especially in
presence of pheromone [69] but also during vegetative
growth [35], while Sic1 is thought to inhibit Clb-Cdk1
complexes [23]. Cells cannot enter S phase as long as
these CKIs are present. Only when enough Clns have
built up to raise Cln-Cdk1 activity to a certain threshold,
can Cln-Cdk1 phosphorylate Sic1 and Far1 to target them
for degradation; in fact, the only essential function of
Cln-Cdk1 appears to be degrading Sic1, because lethality
of the cln1Δ cln2Δ cln3Δ knockout is rescued by deletion
of SIC1 [72]. Phosphorylation of Sic1 on at least 6 sites
targets it for destruction by the SCF [73], while a single
phosphorylation on Far1 (on S87) is sufficient for target-
ing it for degradation [74]. Sic1 is re-expressed in late M
phase, contributing to exit from mitosis and resetting the
cell cycle to a basic G1 state of low Cdk1 activity.
Swe1
Swe1 (the S. cerevisiae homolog of Wee1) is a tyrosine
kinase that phosphorylates Cdk1 on Y19, resulting in
inhibition of Cdk1 kinase activity [75]. In higher eukary-
otes, an increase in phosphorylation levels of T14 and

Y15 of Cdk1 (similar to Y19 in yeast) occurs upon DNA
damage, which is important for cell cycle arrest [76].
However, S. cerevisiae cells do not target Cdk1 to arrest
the cell cycle in response to DNA damage, but instead
directly inhibit the processes associated with cell cycle
progression (see section 'Cdk1 in maintenance of genome
stability'). It appears that Swe1 has taken on a different
role, i.e. it delays the cell cycle in response to actin and
septin cytoskeleton stresses, and this checkpoint has
been referred to as the morphogenesis checkpoint [77-
80]. However, although Swe1 may not be involved in
enforcing checkpoint-induced cell cycle arrest, it may still
have a function in the DNA damage response, because
the DNA replication checkpoint controls Swe1 levels to
regulate bud morphogenesis, thus contributing to cell
viability [81]. Swe1 preferentially phosphorylates Clb2-
Cdk1 complexes, but it has intermediate activity on
Clb3,4-Cdk1 complexes and low activity on the Clb5,6-
Cdk1 complexes that act earlier in the cell cycle
[24,75,82]. One explanation for the differential activity of
Swe1 towards the different Clb-Cdk1 complexes is that
Sic1 protects Clb5,6-Cdk1 complexes from Swe1-medi-
ated phosphorylation during the earlier stages of the cell
cycle; Sic1 is absent in later stages of the cell cycle and
therefore cannot protect Clb1,2-Cdk1 from Swe1 [82].

Swe1 is stable during G1 and its expression peaks at the
end of S phase, becoming unstable in G2 or M phase
when it is rapidly degraded [83,84]. Both the APC and the
SCF may have a function in degradation of Swe1 [85,86].
Degradation of Swe1 requires its recruitment to the sep-
tin ring at the bud neck, where it is phosphorylated by the
kinases Cla4, Cdc5 and Cdk1, which target it for destruc-
tion [15,77,80,87,88]. However, cellular stresses that lead
to perturbation of the actin or septin cytoskeleton acti-
vate the morphogenesis checkpoint by preventing Swe1
degradation, thereby inhibiting Cdk1 and delaying the
cell cycle in G2 [80,83]. In addition, under normal growth
conditions, swe1Δ mutants have a reduced cell size
[84,89], and therefore Swe1 may be part of a network that
monitors cell size, delaying the cell cycle until the bud has
reached a critical size [84,90].
Mih1
The Swe1-mediated inhibitory phosphorylation of Y19 of
Cdk1 is reversed by the tyrosine phosphatase Mih1
(Cdc25 in S. pombe and higher eukaryotes) to promote
entry into mitosis [91]. Deletion of Mih1 results in
increased cell size and a delay in entry into mitosis [92].
Compared to Swe1, relatively little is known about regu-
lation of Mih1. It was recently shown that it is hyperphos-
phorylated in an early stage of the cell cycle and
dephosphorylated as cells enter mitosis [92]. CK1 (for-
merly known as casein kinase 1) is responsible for most of
the hyperphosphorylation of Mih1 [92]. In addition,
Cdk1 directly phosphorylates Mih1, but Cdk1 activity is
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also required to initiate Mih1 dephosphorylation as cells
enter mitosis. The consequences of these phosphoryla-
tions remain unclear [92], but it is tempting to speculate
that dephosphorylation of Mih1 stimulates its phos-
phatase activity towards phosphorylated Y19 of Cdk1,
since Mih1 dephosphorylation coincides with entry into
mitosis, an event that is dependent on Cdk1 activity.
Cks1
Cks1 was originally identified as a high-copy suppressor
of temperature sensitive cdc28-4, cdc28-9 and cdc28-13
mutations [93]. Cks1 likely has an important cellular
function because cks1Δ mutants are either very sick or
not viable [93,94]. Exactly what that function is has
remained enigmatic [95], although recent studies have
shown that it has a role in transcription by recruiting the
proteasome to promoter regions [96], especially to the
promoter of the essential APC component CDC20 [96].
Furthermore, Cks1 is required for certain proteasome
functions during M-phase-specific proteolysis [97] and it
increases the activity of Cln-Cdk1 complexes to promote
progression through G1 phase [98].
Acetylation
The importance of regulation of protein function by
acetylation was recognized almost 40 years ago [99], and
protein acetylation is now known to regulate many
diverse functions, including DNA recognition, protein-
protein interaction and protein stability [100]. Interest-
ingly, Cdk1 was recently found to be acetylated on K40,
which is located within the kinase domain and which is
conserved in Cdc2 (the human form of Cdk1) [101].
Mutation of this lysine residue to arginine resulted in
lethality, showing that acetylation of K40 is critical for the
function of Cdk1 [101]. The acetyl transferase that acety-
lates Cdk1 remains unknown. A good candidate could be
Gcn5, which acetylates human Cdk9 on a similarly posi-
tioned lysine residue to regulate its activity [102]. How-
ever, a gcn5Δ mutant is viable, while a cdc28-K40R
mutant is not, and therefore additional acetyl transferases
must exist that can acetylate Cdk1.
Cdc14
Cdc14 is a phosphatase that is stored in the nucleolus
during most of the cell cycle, but it is released during late
mitosis to promote mitotic exit by dephosphorylating tar-
gets of Cdk1. This contributes to resetting of the cell cycle
to a basic G1 state of low Cdk1 activity and hypophos-
phorylated Cdk1 targets. Regulation of Cdc14 will be dis-
cussed in more detail in section 'Cdk1 and exit from
mitosis'.

Processes and targets controlled by Cdk1
Cdk1 and transcriptional programs
Unidirectional movement through the cell cycle is critical
for cell viability and well-being of the organism; reversal
of the direction of the cell cycle can have devastating con-

sequences for the cell, including genome instability.
Therefore, cells have developed mechanisms that ensure
that the cell cycle is irreversible. One major mechanism
that promotes unidirectionality involves regulation of
distinct transcriptional programs during the different
phases of the cell cycle. Typically, each transcriptional
program leads to expression of sets of proteins that carry
out processes important for the next phase of the cell
cycle, thereby promoting unidirectional movement
through the cell cycle. Furthermore, as we will discuss
below, feedback mechanisms have evolved that ensure
that the cell cycle is irreversible; positive feedback loops
make sure that cell cycle entry is robust and switch-like,
while negative feedback loops inhibit transcriptional pro-
grams to prevent reversal of the cell cycle [103-105]. Reg-
ulation of the cell cycle's transcriptional programs is
highly complex, and here we focus mainly on the Cdk1-
dependent aspects of transcriptional regulation (Fig. 1;
for a recent review see [106]).

Under physiological conditions, activation of transcrip-
tion in G1 phase is primarily carried out by Cln3-Cdk1
complexes [45-47], although in absence of Cln3, either
Cln1 or Cln2 is sufficient to induce Cdk1-dependent
transcription [48-50]. Approximately 200 genes are spe-
cifically expressed in G1, and together they are referred to
as the G1 cluster [107,108]. Two complexes exist that
mediate expression of the G1 cluster: MBF (Mlu1-box
binding factor), a complex between Mbp1 and Swi6,
which binds promoters harboring the MCB (Mlu1 cell
cycle box) promoter element; and SBF, a complex
between Swi4 and Swi6, which binds promoters harbor-
ing the SCB element (Swi4/6 cell cycle box). Although
there is overlap between the classes of genes that are con-
trolled by MBF and SBF, it appears that MBF preferen-
tially induces transcription of genes involved in control or
execution of DNA replication and repair (such as POL2,
CDC2, RNR1, CLB5 and CLB6), while SBF regulates tran-
scription of genes involved in cell cycle progression, cell
morphogenesis and spindle pole body duplication (e.g.
CLN1, CLN2, PCL1, PCL2, GIN4, FKS1 and FKS2) [106].
Recruitment of RNA polymerase II to the promoter
region of these genes depends on Cdk1 activity [109].
Furthermore, Cln3-Cdk1-induced cell cycle entry is
dependent on Swi6 (which is shared by both MBF and
SBF and which mediates transcriptional activation) [110],
suggesting that Cdk1 controls SBF/MBF. Indeed, Cdk1
controls SBF/MBF in multiple ways. During early G1,
promoter-bound SBF is kept inactive by Whi5 [111,112].
In addition, Whi5 recruits the histone deacetylases Hos3
and Rpd3, thus further contributing to repression of tran-
scription of G1 genes [113,114]. Efficient cell cycle entry
requires phosphorylation of Whi5 by the CDKs Cdk1 and
Pho85, which results in dissociation of the SBF-Whi5-
Hos3/Rpd3 complex, thereby allowing SBF to activate
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transcription of its target genes [111-114]. In addition to
Whi5, Cdk1 may directly control SBF, although mutating
the Cdk1 sites in Swi4 and Swi6 had little effect on timing
of transcriptional activation [63,110,115] (also see below).
However, combined mutation of Cdk1 sites in Whi5 and
Swi6 results in cell lethality [112,116], indicating that
redundancy exists in Cdk1-mediated transcriptional acti-
vation of SBF. The mechanism of Cln3-Cdk1-mediated
transcriptional activation of MBF remains unknown and
may involve a regulatory mechanism similar to Whi5.
Interestingly, both MBF and SBF interact with Msa1, and
this interaction contributes to proper timing of the G1
transcriptional program [117].

Importantly, downregulation of Whi5 by Cln3-Cdk1
complexes results in enhanced expression of Cln1 and
Cln2. Cln1/2-Cdk1 complexes can also activate SBF/MBF
and inhibit Whi5, thus creating a positive feedback loop
in which Cln1 and Cln2 boost their own expression,
which is important for robust cell cycle entry [104].

Several mechanisms have been described for switching
off the G1 program as the cell enters S phase. For
instance, phosphorylation of Msa1 by Cdk1 in its NLS

sequence has been reported to result in its exclusion from
the nucleus [118], indicating that Cdk1 may target Msa1
to help shut off the G1 transcriptional program. However,
the amplitude of transcriptional activation by SBF and
MBF changes little in msa1Δ mutants [117], indicating
that Msa1 is a relatively minor player in regulation of the
G1 transcriptional program, and rather functions to fine-
tune the timing of gene expression. Cyclin-Cdk1 com-
plexes may directly target SBF and MBF to shut off the G1
transcriptional program. For instance, Clb6-Cdk1-medi-
ated phosphorylation of Swi6 S160 results in its nuclear
export [63,64]. However, binding of MBF to promoters is
not regulated during the G1-S transition [103], at which
time Clb6 is degraded [60], indicating that phosphoryla-
tion of Swi6 by Clb6-Cdk1 plays a relatively minor role in
shutting off the G1 transcriptional program. Cdk1 may
also target Swi4 to shut off the G1 program, because
Clb2-Cdk1 directly interacts with Swi4 [119], and this
physical interaction inhibits the ability of Swi4 to bind
promoters [115,120], which may be relevant to prevent
expression of the G1 program during the later stages of
the cell cycle when Clb2 is present. Stb1 may also be a tar-

Figure 1 Regulation of transcriptional programs by Cdk1 during the cell cycle. Cdk1 is involved in positive and negative feedback loops that 
regulate transcriptional programs to control cell cycle progression. See text for details.
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get of Cdk1 during exit from G1. Stb1 is a protein that
interacts with Swi6 to promote the activity of SBF and
MBF [121-123], and phosphorylation of Stb1 by Cdk1
releases it from promoters, although it is unclear to what
extent this contributes to shutting off the G1 program
[121-123]. The major player in shutting off the G1 pro-
gram appears to be the transcriptional repressor Nrm1,
which binds and inhibits MBF complexes [103]. Nrm1
acts through negative feedback, since Nrm1 expression is
mostly dependent on MBF (although SBF can also acti-
vate NRM1); thus, MBF activity leads to accumulation of
Nrm1, which then binds and inhibits MBF to shut off the
G1 program as cells enter S phase [103].

A second transcriptional wave occurs when cells make
the transition from G1 to S phase, resulting in expression
of genes that make up the two S phase gene clusters, i.e.
the histone cluster, consisting of all nine histone genes,
and the MET gene cluster. Furthermore, it was recently
discovered that a cluster of approximately 180 genes is
induced during late S phase, nearly half of which function
in chromosome organization and spindle dynamics, but
this cluster also contains many genes encoding transcrip-
tion factors that function later in the cell cycle, such as
FKH1, FKH2 and NDD1 (see below) [124]. This cluster is
controlled by the forkhead transcription factor Hcm1
[124], and here we will refer to it as the Hcm1 cluster.
Hcm1 expression itself is cell cycle regulated and peaks in
late G1 [124]. HCM1 expression is probably controlled by
SBF and MBF because it has binding sites for both com-
plexes in its promoter [125]. Hcm1 induces the expres-
sion of Fkh1, Fkh2 and Ndd1 [124], which function in the
next stage of the cell cycle, which may contribute to
robust cell cycle progression; Hcm1 also induces the
expression of Whi5 [124], which may provide negative
feedback to prevent expression of the G1 transcriptional
program outside of G1. Interestingly, constitutive expres-
sion of HCM1 from the GAL1 promoter did not com-
pletely abolish the fluctuation in the cell cycle-dependent
expression of two Hcm1 targets (WHI5 and NDD1), sug-
gesting that in addition to regulating its expression, the
cell cycle may also control Hcm1 activity through post-
translational modifications [124]. It is tempting to specu-
late that Cdk1 is responsible for this regulation, because
Hcm1 contains 12 potential Cdk1 sites and it is an effi-
cient target of Clb-Cdk1 in vitro [126].

From the end of S phase until nuclear division in M
phase a set of approximately 35 genes, including CDC5,
CDC20, SWI5 and ACE2, is expressed with similar kinet-
ics as CLB2, and is therefore referred to as the CLB2 clus-
ter [106-108]. The CLB2 cluster was found to be
controlled by the transcription factor called 'SFF' (SWI
Five Factor), the identity of which was later shown to be
the partially redundant forkhead transcription factors
Fkh1 and Fkh2 [127-129]. Simultaneous deletion of FKH1

and FKH2 uncouples transcription of the CLB2 cluster
from the cell cycle, showing that Fkh1 and Fkh2 provide
the link between the cell cycle and periodic expression of
the CLB2 cluster [127]. Fkh2 occupies the majority of SFF
sites due its interaction with the transcription factor
Mcm1, which increases the affinity of Fkh2 for the SFF
element about 100-fold, thus outcompeting Fkh1 (which
does not interact with Mcm1). Cdk1 controls transcrip-
tion of the CLB2 cluster in multiple ways, creating a posi-
tive feedback loop in which Clb2 promotes its own
synthesis [119]. For instance, Clb-Cdk1 complexes phos-
phorylate Fkh2 on S683 and T697 (although additional
sites may exist [130]). In addition, Clb2-Cdk1 phosphory-
lates residue T319 on the rate-limiting transcriptional
transactivator Ndd1 [131,132]; Ndd1 activates gene tran-
scription upon recruitment by Fkh2 [133]. Interestingly,
phosphorylation of both Ndd1 and Fkh2 is thought to
increase their interaction, thus stimulating transcription.
Phosphorylation of Ndd1 on S85 by the polo kinase Cdc5
further enhances its transcriptional activity [134]. Phos-
phorylation of proteins by Cdk1 can create a docking site
for polo kinases [135], and it is tempting to speculate that
T319 phosphorylation of Ndd1 by Cdk1 serves as a prim-
ing site for Cdc5, which subsequently would phosphory-
late S85. However, phosphorylation of Ndd1-T319 is not
required for phosphorylation of Ndd1-S85 [134]. There-
fore, it remains unknown how Cdc5 is recruited to the
Fkh2-Ndd1 complex. The key might be Fkh2, which is
required for Cdc5-mediated phosphorylation of Ndd1
and which is also a target of Cdk1 [130,134].

Four clusters of genes are expressed between M phase
and G1 phase: the MCM cluster, the SIC1 cluster, the
MAT cluster and the PHO regulon [107,108]. Expression
of MCM cluster genes (including MCM2-7, CDC6, SWI4,
and CLN3) is controlled by the Mcm1 transcription fac-
tor, which as mentioned above is also involved in expres-
sion of the CLB2 cluster when it is complexed to Fkh2.
However, throughout most of the cell cycle Mcm1 also
binds the homeodomain repressors Yox1 and Yhp1, and
genes that contain binding sites for Yox1 and Yhp1 in
their promoter (the MCM cluster genes) are repressed by
the Yox1-Mcm1 and Yhp1-Mcm1 complexes [136]. Yox1
and Yhp1 are unstable proteins, and Yox1 is expressed in
mid-G1 through early S, while Yhp1 is expressed later in
the cell cycle [108,136]. During M-G1, when both repres-
sors are not expressed, the promoters of the MCM cluster
genes are de-repressed and transcription can occur. It is
currently unknown whether Cdk1 directly controls the
activity of Yox1 and Yhp1, but both proteins (especially
Yox1) are efficient targets of Cdk1 in vitro [126]. Expres-
sion of both these proteins fluctuates during the cell cycle
[108,136], and the promoter regions of both YOX1 and
YHP1 contain binding sites for SBF/MBF, while the YHP1
promoter also contains multiple binding sites for Fkh1/2
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[137], suggesting that Yox1 and Yhp1 are at least indi-
rectly controlled by Cdk1.

Expression of the SIC1 cluster is controlled by the tran-
scription factors Swi5 and Ace2, which bind the same
DNA sequences in vitro with similar affinities and whivh
regulate an overlapping set of genes in vivo [138,139].
However, in some cases the two proteins control distinct
promoters, e.g. Swi5 activates transcription of the HO
endonuclease gene whereas Ace2 does not; conversely,
the CTS1 gene encoding endochitinase is activated by
Ace2 and not by Swi5 [140]. Swi5 is negatively regulated
by Cdk1, because Cdk1-mediated phosphorylation of the
NLS of Swi5 results in its exclusion from the nucleus
[141,142]. Presumably, when Cdk1 becomes inactivated
at the end of M phase, Swi5 becomes dephosphorylated,
allowing it to enter the nucleus and activate transcription
of the SIC1 cluster. Ace2 is also phosphorylated by Cdk1
on multiple residues including in the NLS [143,144], and
similar to Swi5, phosphorylation of Ace2 by Cdk1 has
been suggested to result in its nuclear exclusion
[143,144].

Asymmetric cell division in budding yeast yields a big-
ger mother and a smaller daughter, and cell cycle entry is
also asymmetric; mothers cells enter the cell cycle faster
than daughter cells [145-148]. Interestingly, this cell cycle
delay in daughter cells may be mediated by Ace2
[149,150]. Ace2 localizes to the cytoplasm during most of
the cell cycle, presumably due to phosphorylation by
Clb3,4-Cdk1 [143,144]. When cells exit from mitosis,
Ace2 specifically localizes to the nucleus of the daughter
cell, and this asymmetric localization of Ace2 requires the
activity of the Mob2-Cbk1 kinase complex [151-153]. In
addition, nuclear localization of Ace2 may require
dephosphorylation of its Cdk1 sites [143,144], which
likely occurs when Cdk1 is downregulated during mitotic
exit (see section 'Cdk1 and exit from mitosis'). In the
daughter cell, Ace2 represses the transcription of CLN3,
thus providing the daughter cell with the opportunity to
properly control its cell size [149,150].

The MAT cluster is a set of genes (including FAR1) nor-
mally induced by mating pheromone, but which is also
expressed to a certain degree during M-G1 even in
absence of pheromone. The rationale for basal expression
of the MAT cluster in absence of pheromone could be
that cells can respond quickly to arrest the cell cycle and
to initiate mating once pheromone is detected. Expres-
sion of the MAT cluster depends on the aforementioned
Mcm1 as well as the transcription factor Ste12, which
binds to pheromone response elements (PREs) in the
upstream activating sequences of its target genes [154-
157]. Cdk1 has a profound effect on restricting the phero-
mone response (and thereby expression of genes with
PRE promoter sequences) to the G1 phase of the cell
cycle, which we will discuss later (see section 'Cdk1

restricts pheromone signaling to the G1 phase of the cell
cycle').

The PHO regulon is also transcribed at the M-G1
boundary [107,108] and includes genes involved in scav-
enging and transporting phosphate [158]. The expression
of these genes might not necessarily be regulated by the
cell cycle, but might rather be a result of depletion of cel-
lular phosphate pools during the metabolic processes
associated with cell duplication, thus triggering the phos-
phate starvation response [158,159]. Regardless, it was
recently shown that Cdk1 can phosphorylate the tran-
scription factor Pho2 on S230, resulting in increased
binding of Pho2 to Pho4 [160]. The Pho2-Pho4 complex
is required for activation of PHO5, which encodes an acid
phosphatase that is secreted into the periplasmic space
and scavenges phosphate by working in conjunction with
high-affinity phosphate transporters [161]. Pho2 also
associates with the Myb-like transcription factor Bas1 to
activate genes in the pyrimidine, purine and histidine bio-
synthesis pathways [162]. Therefore, by activating the
Pho2-Pho4 complex, Cdk1 may help replenish cellular
phosphate pools and stimulate biosynthesis of basic
building blocks for the next round of cell division. Pho85
and Cdk1 work together in this process, because upon
phosphate starvation Pho85 phosphorylates the NLS of
Pho4 resulting in nuclear import of Pho4 [163].

Several other less well characterized transcription fac-
tors exist that show cell cycle-dependent expression and
that are efficient targets of Cdk1 in vitro [126], such as
Plm2 (a putative transcription factor that is induced at
Start and in response to DNA damage), Tos4 (putative
transcription factor similar to Plm2; Tos4 expression
peaks in G1) and Pog1 (a putative transcriptional activa-
tor that promotes recovery from pheromone-induced cell
cycle arrest, presumably by relieving the repression of
CLN1 and CLN2 [164]). It will interesting to see how
these proteins impact the cell cycle and whether they are
controlled by Cdk1.

While Cdk1 regulates many aspects of transcription
throughout the cell cycle, there is evidence that transcrip-
tional programs are executed by a free-running oscillator
independently of Cdk1 [22]. Indeed, when Cdk1 was
experimentally inactivated upon entry of cells into the
cell cycle, about 70% of periodic genes continued to be
expressed periodically and on schedule [165], and there-
fore Cdk1 is unlikely to be the single determinant of
global periodic transcriptional programs; rather, it may
fine-tune coordination of the cell cycle with periodic
transcription.

Finally, in addition to controlling transcription factors,
Cdk1 has also been reported to affect the process of tran-
scription in other ways. For instance, together with Cks1
it recruits the proteasome (which enhances efficient tran-
scription elongation by RNA polymerase II [166,167]) to
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the GAL1 ORF during galactose-induced transcription of
the GAL1 gene to promote transcription [168]. Interest-
ingly, this appears to be independent of its kinase activity,
suggesting that Cdk1 may function as an adaptor protein
[168]. Cdk1 may also modulate transcription by regulat-
ing chromatin modifiers. For example, it was recently
suggested that Clb2-Cdk1 is required for NuA4-mediated
acetylation of Htz1 on Lys14 [169], and Cdk1 has been
speculated to exert this function through phosphoryla-
tion of Yng2 [169], which is a component of NuA4
required for histone acetyltransferase activity and which
may be phosphorylated on Cdk1 sites in vivo [17]. Cdk1
may also affect histone acetylation by promoting dissoci-
ation of the repressive Sin3 histone deacetylase complex
from the CLB2 promoter, resulting in a local, transient
increase in histone H4 acetylation, which facilitates tran-
scription [170]. The molecular target of Cdk1 in this pro-
cess is not known, but could be Sin3 itself, because in
proteomic studies it has been found to associate with
cyclins [144] and to be phosphorylated on Cdk1 sites in
vivo [17,171].

Cdk1 and cell morphogenesis
Dramatic changes in cell morphology take place when
cells enter the cell cycle and start to form a bud. Several
steps can be distinguished in bud morphogenesis: The
initial selection of the bud site, followed by polarized bud
growth (also referred to as apical bud growth, i.e. local-
ized growth at the tip of the bud), which is followed by
isotropic bud growth (unlocalized bud growth such that
the entire surface of the bud expands evenly), cytokinesis,
and abscission to release the daughter cell. Cdk1 activity
is crucial for bud formation, because in absence of all
three G1 cyclins (Cln1, Cln2 and Cln3) no buds are
formed [67], and Cdk1 also coordinates cell surface
growth with the cell cycle [16]. Cdk1 cooperates with the
CDK Pho85 to promote proper bud morphogenesis
[172], and a cln1 cln2 pcl1 pcl2 quadruple mutant (lacking
G1 cyclins for Cdk1 and Pho85) is not viable [173,174].
As we will discuss in this section, Cdk1 facilitates bud
morphogenesis in multiple ways (Fig. 2).
Cell polarization
The first step in bud formation is selection of the incipi-
ent bud site, which does not occur randomly. Haploid S.
cerevisiae cells display an axial budding pattern, meaning
that the first bud forms adjacent to the pole where the
birthmark is located, and during all subsequent rounds of
the cell cycle the buds are located at the same pole. In
contrast, diploid yeasts show a bipolar pattern, i.e. buds
are formed at the cell pole that is opposite of the previous
site of budding. In haploid cells, the incipient bud site is
marked by landmark proteins such as Axl1, Axl2, Bud3
and Bud4, and their localization depends on septins
[175]. In diploid cells, the incipient site is marked by

Bud8, Bud9, and Rax2, and their localization is dependent
on the polarisome complex, the actin cytoskeleton, and
various other components [175]. The next step in bud
selection is recruitment of Bud2 by the landmark pro-
teins, both in haploid and in diploid cells. Bud2 is an
exchange factor for the small Ras-like GTPase Bud1/Rsr1
(Rap1 in mammalian cells), and recruitment of Bud2
results in local activation of Bud1. In absence of Bud1 the
cell can still form a bud, but at random sites. Once the
bud site has been selected, the components for bud
growth are assembled. A key player is Cdc24, which is
recruited by Bud1, and recruitment of Cdc24 is depen-
dent on Cdk1 activity. During G1, when Cdk1 is inactive,
Cdc24 is sequestered in the nucleus by Far1. When the
levels of Cln2 have sufficiently built up and the activity of
Cln2-Cdc28 has reached a threshold, it phosphorylates
Far1, resulting in its degradation and release of Cdc24,
which exits the nucleus and localizes to the presumptive
bud site [176]. Interestingly, Cdc24 is phosphorylated in a
cell cycle-dependent manner and is triggered by Cdk1
[16,177,178]. While Cdk1 can efficiently phosphorylate
Cdc24 in vitro [16], mutation of six CDK consensus sites
in Cdc24 had no effect on its function in vivo [178].
Rather, the PAK-like kinase Cla4 is thought to be respon-
sible for its phosphorylation, and Cla4 activity depends
on Cdk1, although it is unknown whether Cdk1 directly
phosphorylates Cla4 [179].

Cdc24 is an exchange factor for the small GTPase
Cdc42, and clustering and activation of Cdc42 is a key
step in polarization of the actin cytoskeleton, which is
mediated by the downstream Cdc42 effectors Cla4, Ste20,
Gic1 and Gic2 [180,181]. An SH3 domain containing pro-
tein, Bem1, acts as a scaffold for several proteins includ-
ing Cdc24, Cdc42 and Cla4 [182], and clustering of these
proteins is thought to provide a positive feedback loop
that amplifies actin cytoskeleton polarization [183-185].
Phosphorylation of Cdc24 by Cla4 may abrogate the
interaction between Bem1 and Cdc24, releasing Cdc24
from the site of polarized growth, thus restricting the
extent of bud growth [178], although this hypothesis has
been debated [177]. Scaffolding proteins are frequently
used by cells as platforms on which several signaling
pathways converge [186] and it is tempting to speculate
that Bem1 may integrate cell cycle signals with bud
growth. Bem1 is a good substrate for Cdk1 in vitro [126],
and has been shown to be phosphorylated by Cdk1 on
S72 in vivo [187]. However, this phosphorylation had no
effect on bud emergence, and appeared to control vacuole
homeostasis instead [187]. However, two other SH3
domain containing adaptor proteins, Boi1 and Boi2,
which also bind Cdc42 to maintain cell polarity and to
induce bud formation [188,189], were recently shown to
be phosphorylated by Cdk1 in vitro and in vivo [16], and
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these phosphorylations were required for the function of
Boi1 and Boi2.

Hydrolysis of GTP to GDP by Cdc42 is stimulated by
the GAPs Rga1, Rga2, Bem2 and Bem3, and cycling
between the GDP-bound state and the GTP-bound state
is important for the function of Cdc42, since Cdc42
mutants that are locked in either the GDP-bound or the
GTP-bound form display similar phenotypes [190]. Inter-
estingly, Rga2 was recently shown to be directly phospho-
rylated by Cdk1 and Pho85 during G1 [16,191], which is
thought to inhibit its activity, thus restricting activation
of Cdc42 and preventing preliminary bud formation dur-
ing G1 phase [191]. Furthermore, Bem2 and Bem3 are
also phosphorylated and thereby inhibited by Cln-Cdk1
[192]. Therefore, during G1 phase, when Cdk1 is inactive,
hypophosphorylated (i.e. active) Rga2, Bem2 and Bem3

keep Cdc42 in an inactive state, thus preventing cell
polarization and bud formation during this phase of the
cell cycle. Once the cell passes Start, Cdk1 promotes bud
formation by stimulating Cdc42 activity in several ways:
(i) by degrading Far1, thus releasing Cdc24 from the
nucleus; (ii) by promoting the activity of Boi1 and Boi2,
which help maintain a polarized state; and (iii) by inhibit-
ing the activity of the Cdc42-GAPs Rga2, Bem2 and
Bem3.

Once cell polarity is established, vesicles are trans-
ported along the actin cables towards the site of bud
growth. Among other things, these vesicles mediate the
transport of factors involved in cell wall synthesis, and
fusion of these vesicles with the plasma membrane pro-
vides the membrane material that supports surface
growth of the cell membrane. Continuous fusion of the

Figure 2 Cdk1 and control of bud morphogenesis. Landmark proteins select the bud site, which is followed by recruitment and activation of Bud1, 
which in turn recruits and activates the small GTPase Cdc42. Cdk1 reinforces activation of Cdc42 by inhibiting the activity of the GAPs Bem2/3 and 
Rga2, and by phosphorylating the adaptor proteins Bem1 and Boi1/2. Cdk1 may also activate Cdc42 by phosphorylating the GEF Cdc24. GTP-bound 
Cdc42 then recruits Cla4, which mediates polarization of the actin cytoskeleton, which is required for bud growth. In addition, Cdk1 promotes the 
activity of the small GTPase Rho1 by inhibiting Bem2 and by activating the GEF Tus1, which supports bud growth. The septins Shs1 and Cdc3 are also 
phosphorylated by Cdk1, which may affect the mobility of Cdc3, while phosphorylation of Shs1 may affect the activity of Cdk1 by negative feedback 
in a later stage of the cell cycle. See text for details.
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vesicles with the cell membrane creates a demand for lip-
ids. Since Cdk1 coordinates cell surface growth with the
cell cycle [16], it might be expected that it controls syn-
thesis of membrane lipids. Indeed, it was recently shown
that Cdk1 phosphorylates and activates the triacylglyc-
erol lipase Tgl4 [193]. Triacylglycerols serve as reservoirs
for energy substrates (fatty acids) and membrane lipid
precursors (diacylglycerols and fatty acids), and during
early stages of the cell cycle Cdk1-induced lipolysis by
Tgl4 mobilizes cell membrane precursors from lipid
stores. In addition, Smp2, a transcriptional repressor that
inhibits the expression of phospholipid biosynthetic
genes, controls growth of nuclear membrane structures
[194]. Smp2 is phosphorylated and inactivated by Cdk1
during a late stage of the cell cycle, when the mitotic spin-
dle elongates, and inactivation of Smp2 leads to increased
phospholipid synthesis [194,195]. Because S. cerevisiae
undergoes closed mitosis (the nuclear membrane does
not break down), additional phospholipids may be
required to support nuclear membrane growth. Thus,
Cdk1 coordinates membrane growth in at least two ways:
(i) by mobilizing membrane precursors from lipid stores
by phosphorylating and activating the lipase Tgl4 [193];
and (ii) by inducing the expression of genes involved in
lipid synthesis by phosphorylating and inactivating the
transcriptional repressor Smp2, thereby supporting
nuclear membrane growth in a later stage of the cell cycle
[194].

Vesicle transport is carried out by the type V myosin
Myo2 and depends on the small Rab-family GTPase Sec4,
which is activated by its GEF Sec2 [196,197]. The exocyst
complex (which consists of Sec3, Sec5, Sec6, Sec8, Sec10,
Sec15, Exo70, and Exo84 [198]) is an effector of Sec4
[199]. Sec3 and Exo70 localize to the site of bud growth,
and the entire exocyst complex is formed once a vesicle
arrives. The complex tethers the vesicle to the membrane
until it is fused with the cell membrane by SNARE pro-
teins [200]. Interestingly, when Cdk1 activity is inhibited,
vesicles no longer arrive at the site of bud growth and the
polarized localization of several factors involved in vesi-
cle transport, such as Sec2, Sec3 and Myo2, is lost [16].
This is unlikely to be the result of failure to maintain a
polarized actin cytoskeleton due to loss of phosphoryla-
tion of Boi1, Boi2 and Rga2, because Sec3 localization is
independent of the actin cytoskeleton [201]. Given the
central role of Cdk1 in bud morphogenesis, it seems likely
that Cdk1 directly controls regulators of vesicle transport.
Interestingly, several proteins involved in vesicle trans-
port are efficient in vitro Cdk1 targets, such as Sec1, Sec2,
Sec3 and Exo84 [126,202].
Cell wall synthesis and remodeling
As vesicles are delivered to the growing bud, extensive
remodeling of the cell wall takes place, which requires
coordinated activity of the biosynthetic pathways that

synthesize cell wall material. A central player in coordina-
tion of cell polarity, vesicle transport and morphogenesis
is the small GTPase Rho1. Rho1 controls a plethora of
effector proteins: Sec3 (the exocyst component discussed
above), Bni1, Fks1 and Fks2, Pkc1, and Skn7. Bni1 is a
formin family protein that assembles the actin cables
along which vesicles travel towards the site of polarized
growth [203-207]; Fks1 and Fks2 are components of the
β-1,3-glucan (a major component of the cell wall) syn-
thase, essential for cell wall biosynthesis [208-210]; Skn7
is a yeast multicopy suppressor of defects in beta-glucan
assembly, and regulates G1/S transition-specific and
stress-induced transcription [211-213]; and Pkc1 is a pro-
tein kinase C homolog that controls a cell wall integrity
signaling pathway that supports growth and integrity of
proliferating cells [214-216]. Given all these functions of
Rho1 in cell morphogenesis, it might be not surprising
that its activity is controlled by Cdk1. Indeed, it was
recently shown that Cdk1 directly controls the Rho1-GEF
Tus1 [217]. In addition, Bem2, the previously mentioned
GAP for Cdc42 that is negatively affected by Cdk1-medi-
ated phosphorylation, also has GAP activity towards
Rho1 [218]. Cdk1 may therefore positively affect Rho1 by
increasing the activity of Tus1 while simultaneously
inhibiting the activity of Bem2.

In addition to regulating proper localization of factors
involved in cell wall synthesis, Cdk1 may also be more
directly involved in cell wall synthesis. The activity, local-
ization and stability of chitinases is cell cycle regulated
[219-221], and cak1-P212S mutants, which are defective
in activation of Cdk1, have thin, uneven cell walls and
abnormalities in septum formation, and this phenotype
can be suppressed by expression of an allele of CDK1 that
bypasses the requirement for Cak1 [222]. Furthermore,
the cell wall biogenesis of spores may also be controlled
by Cdk1 [223]. Cdk1-mediated control of cell wall synthe-
sis can be direct; for example, one of the chitin synthases,
Chs2, becomes phosphorylated on Cdk1 consensus sites
[224,225]. Chs2 resides at the ER during most of the cell
cycle, but it is recruited to the bud neck during cytokine-
sis, where it deposits chitin as the actomyosin ring con-
tracts [226,227]). Retention of Chs2 at the ER depends on
phosphorylation on four Cdk1 consensus sites by mitotic
Cdk1 [225], but when Cdk1 activity drops during mitotic
exit (see section 'Cdk1 and exit from mitosis'), Chs2
becomes dephosphorylated, causing it to translocate
from the ER to the bud neck.

Many more cell wall biogenesis proteins exist that
deposit cell wall material, remodel the cell wall and mod-
ify cell wall components; this not only maintains cell wall
integrity but also affects important processes such as
water retention, adhesion, and virulence [221,228]. Given
the complexity of bud formation, we believe that more
Cdk1 targets remain to be identified that coordinate the
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cell cycle with cell polarization, vesicle sorting and cell
wall biosynthesis.
The switch from polarized to isotropic bud growth
When the bud has reached sufficient length, bud growth
switches from polarized to isotropic bud growth [67], and
this isotropic switch requires redistribution of Cdc42
from the bud tip to the bud cortex [229]. Cdc42 redistri-
bution is dependent on Clb2-Cdk1 and is inhibited by
Swe1, but the relevant target of Clb2-Cdk1 in this process
remains unknown [230]; however, Clb2-Cdk1 is known to
repress transcription of the G1 cyclins [119], and Cln2-
Cdk1 activity is continuously required for bud growth
[16] (described above in section 'Cell polarization'). Thus,
a simple model would be that Clb2-Cdk1 shuts down
polar growth by turning off transcription of G1 cyclins.

Interestingly, it was recently shown that phospholipid
flippases Lem3-Dnf1 and Lem3-Dnf2, which are localized
to polarized sites on the plasma membrane, are impor-
tant for the isotropic switch [231]. In lem3Δ mutants, in
which the phospholipid phosphatidylethanolamine
remains exposed on the outer membrane leaflet, Cdc42
remains polarized at the bud tip. Furthermore, phos-
phatidylethanolamine and phosphatidylserine stimulate
the GAP activity of Rga1 and Rga2 on Cdc42, suggesting
that a redistribution of phospholipids to the inner leaflet
of the plasma membrane induces GAP-mediated scatter-
ing of Cdc42 from the apical growth site [231]. Although
in vivo evidence is lacking, it is tempting to speculate that
Cdk1 may control the activity of Dnf2, because Dnf2 is an
efficient target of Cdk1 in vitro [126]. In addition, the
kinase Fpk1, which has been proposed to regulate Lem3-
Dnf2 [232], is a potential Cdk1 target in vivo [17]. There-
fore, the concerted action of Cdk1 and flippases may be
involved in the isotropic switch.
Organelle inheritance
In addition to delivery of vesicles to the growing bud,
Myo2 has a key role in transport and positioning of
organelles; e.g. it is involved in positioning of the nucleus
[233] and delivery of peroxisomes, mitochondria, the
Golgi and the vacuole to the bud [234-237]. Polarized
localization of Myo2 and Myo2-mediated delivery of ves-
icles depends on Cdk1 activity, and therefore it might be
expected that Cdk1 is either directly or indirectly
involved in organelle inheritance. Indeed, Cdk1 has
recently been implicated in inheritance of the vacuole
[238]. Inheritance of the vacuole depends on the Myo2
binding adaptor protein Vac17 [239], which is directly
phosphorylated by Clb-Cdk1 to enhance the interaction
with Myo2, resulting in transport of the vacuole to the
bud, thereby ensuring vacuole inheritance [238]. It is cur-
rently unknown whether inheritance of other organelles
is similarly controlled by Cdk1-mediated phosphoryla-
tion of Myo2 adaptors, although Cdk1 phosphorylates

the Myo2 adaptor Kar9 to control nuclear positioning
(see section 'Cdk1 and chromosome segregation').
Septins
A final set of Cdk1 targets that we will discuss briefly is
the septins. Septins belong to a family of structural pro-
teins that form filaments that constitute the cytoskeleton.
Septins organize into a ring-like structure at the bud neck
where they play multiple roles, for example (i) in selection
of the bud site [240]; (ii) in formation of a diffusion bar-
rier between the mother cell and the bud which helps
maintain cell polarity and which is also involved in cell
aging [241-243]; and (iii) as a platform for signal trans-
duction pathways that control the cell cycle [77]. Several
septins including Cdc3, Cdc10 and Shs1 are targeted by
the kinases Cla4 and Gin4, and these phosphorylations
are thought to play a role in the assembly and dynamics of
the septin ring [244-246]. In addition, Cdk1 can also
phosphorylate the septins Cdc3 and Shs1 [14,247]
(although the involvement of Cdk1 in direct phosphory-
lation of septins has been debated, and it has been argued
that Pho85 rather than Cdk1 phosphorylates these sep-
tins [248]). Cln-Cdk1-mediated phosphorylation of Cdc3
is thought to have a function in disassembly of the old
septin ring in G1 so that a new septin ring can be formed
at the new bud site [247], while Cln-Cdk1 phosphoryla-
tion of Shs1 affects cell morphogenesis as well as recruit-
ment of the kinase Gin4 [14], which positively controls
Cdk1 activity in a later stage of the cell cycle by inhibiting
the stability of Swe1 [249]. Finally, Cdk1-mediated phos-
phorylation of septins has implications for human health,
because Cdk1 phosphorylates the septin Cdc11 in the
pathogenic fungus C. albicans and this is required for
hyphal morphogenesis [250], an important determinant
of its virulence.

Cdk1 restricts pheromone signaling to the G1 phase of the 
cell cycle
The S. cerevisiae pheromone signaling pathway is one of
the best understood signaling pathways in eukaryotes (for
a review see [251]). While it is believed that most essen-
tial pathway components have been identified [251], the
modulation of the activity and specificity of these compo-
nents during the cell cycle and during mating is less well
understood; however, recent studies have identified an
important role for Cdk1, which we will discuss in this sec-
tion (see Fig. 3).

The pheromone response is triggered by binding of
mating pheromone to the seven-transmembrane, het-
erotrimeric G-protein-coupled receptor (Ste2 in MATa
cells and Ste3 in MATα cells) located on the cell surface.
This induces a conformational change of the receptor,
leading to GDP-to-GTP exchange by the associated Gα
subunit Gpa1, thus releasing the Ste4-Ste18 complex (the
Gβγ component of the heterotrimeric G protein) [252-
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257]. The Ste4-Ste18 complex, which is bound to the cell
membrane because Ste18 is farnesylated and palmitoy-
lated, recruits three effectors: (i) the Far1-Cdc24 com-
plex, (ii) the Ste20 protein kinase, and (iii) the Ste5-Ste11
complex. Recruitment of the Far1-Cdc24 complex from
the nucleus to the cell membrane results in localized acti-
vation of Cdc42 [258,259], which in turn binds and acti-
vates the PAK-like kinase Ste20 [260,261], which is
membrane-bound through its interaction with Ste4-
Ste18. Activation of Ste20 then results in reorganization
of the actin cytoskeleton in order to form the mating pro-
jection (shmoo) that will ultimately fuse the MATa and
MATα cells to form a diploid cell; reorganization of the
actin cytoskeleton and subsequent shmoo growth is not
unlike bud morphogenesis (discussed in section 'Cdk1
and cell morphogenesis') and makes use of similar mech-
anisms and components [215]. Finally, the Ste4-Ste18
complex recruits Ste5, which serves as an adaptor for the
kinases Ste11 (MEKK), Ste7 (MEK) and Fus3 (MAPK).
Recruitment of the Ste5 complex brings Ste11 in close
proximity to Ste20, which phosphorylates and activates it
[262,263]. Ste11 in turn phosphorylates Ste7, which then
phosphorylates the MAP kinases Fus3 and Kss1. Both
MAPKs then phosphorylate the transcription factor
Ste12, which induces expression of mating type specific
genes that either have a positive feedback effect (STE2,
FUS3, FAR1) or a negative feedback effect (SST2, MSG5,
GPA1), probably to fine-tune the pheromone response.
Ste12 also activates genes involved in the process of cell

fusion (e.g. FUS1, FUS2, FIG1, FIG2, AGA1). Targets of
Fus3 include Bni1, a formin homologue the phosphoryla-
tion of which is required for actin polarization towards
the site of shmoo growth [264]; Sst2, which is involved in
a negative feedback loop that attenuates pheromone sig-
naling [265]; and Tec1, which binds Ste12 to express
genes required for cell differentiation, and phosphoryla-
tion by Fus3 targets it for SCF-mediated degradation,
thus shifting the spectrum of Ste12-induced gene expres-
sion from differentiation genes towards pheromone
response genes [266,267]. A key substrate of Fus3 is Far1,
and phosphorylation of Far1 on T306 is essential for cell
cycle arrest by inhibiting Cln-Cdk1 complexes [74]. It is
not entirely clear how phosphorylated Far1 inhibits Cdk1
signaling, because one study found that Far1 inhibits Cln-
Cdk1 kinase activity [69], while another study found that
Cln-Cdk1 retains kinase activity in presence of Far1 in
vitro [74]. One mechanism for cell cycle arrest could be
that Far1 blocks access of Cln-Cdk1 to at least some of its
substrates, thus inhibiting cell cycle progression.

Mating of cells should only occur during G1 phase,
because this is the only period in the cell cycle when cells
have a single copy of their genome (1n). Mating outside
G1 would result in aneuploid cells with > 2n DNA con-
tent, which could lead to genome instability. Cdk1 is inac-
tive during G1 phase and this permits pheromone
signaling and cell mating, while outside of G1 Cdk1 is
active and inhibits the mating pathway (Fig. 3A and 3B).
One indication for a role for Cdk1 in regulating the pher-

Figure 3 Cdk1 restricts the pheromone response pathway to the G1 phase of the cell cycle. (A), when pheromone is detected by the receptor 
during G1 phase (when Cdk1 activity is low), a signaling cascade that is mostly mediated by the βγ subunit of the heterotrimeric G protein prevents 
entry into S phase, polarizes the actin cytoskeleton towards the face of the cell with the highest pheromone concentration, and activates transcrip-
tional programs. (B), binding of pheromone to the receptor outside of the G1 phase - when Cdk1 is active - does not trigger the pheromone signaling 
pathway because it is disconnected from its downstream components by Cdk1-mediated phosphorylation of Ste5, Ste20 and Far1. See text for details.
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omone response comes from the observation that in fus3
deletion mutants the polarized localization of Bni1, Ste20
and Ste5 upon pheromone treatment is abrogated, but
this polarized localization is restored upon inhibition of
Cln-Cdk1 activity, suggesting that Cdk1 negatively affects
pheromone-induced polarization of cells [268]. One
molecular target of Cdk1 in the negative regulation of
pheromone signaling could be Ste20, which can be
directly phosphorylated by Cln2-Cdk1 in vitro [269,270].
This is supported by the finding that mutation of all of
the phosphorylation sites in Ste20 (Cdk1 consensus sites
as well as non-Cdk1 sites) resulted in hypersensitivity of
cells to pheromone, indicating that, under physiological
levels of Cdk1 activity, phosphorylation of Ste20 nega-
tively affects pheromone signaling [271]. However, over-
expression of CLN2 was still able to overcome
pheromone arrest in this ste20 phospho-site mutant
[271], and therefore an additional target of Cdk1 must
exist. Based on genetic data, Ste11 may also be a potential
target of Cln-Cdk1 to suppress pheromone signaling
[272], but it has not been demonstrated that Cdk1 actu-
ally phosphorylates Ste11. More recently, Ste5 was identi-
fied as a target of Cdk1 [273]; Cln-Cdk1 phosphorylates
Ste5 on multiple residues flanking a membrane binding
domain [274], which blocks membrane localization of
Ste5 and its associated proteins Ste11, Ste7 and Fus3,
resulting in inhibition of pheromone signaling. Further-
more, phosphoryation of Ste5 may target it for degrada-
tion by the SCF [275], further contributing to inactivation
of the pheromone response pathway. It is not known
whether Cdk1 phosphorylates Ste12; Ste12 controls the
transcriptional program that is required for pheromone-
induced cell cycle arrest and mating, and in absence of
pheromone Cdk1 might be expected to inhibit Ste12 to
prevent illicit expression of genes that mediate cell cycle
arrest mating. Finally, Cln-Cdk1-mediated phosphoryla-
tion of the CKI Far1 on S87 targets it for degradation [74].
Presumably, destruction of Far1 results in more active
Cln-Cdk1 complexes, which in a feedback loop will phos-
phorylate and destroy more Far1, resulting in cell cycle
entry and closure of the window of opportunity for cell
mating.

Cdk1 and DNA replication
Initiation of DNA replication
A key outcome of the cell cycle is the transmission of a
complete and intact set of genetic material from one gen-
eration to the next. Two events are key to faithful execu-
tion of this process: (i) replication of the genome and (ii)
segregation of the replicated genomes into the daughter
cells (which we will discuss in section 'Cdk1 and chromo-
some segregation'). To make sure that cells do not segre-
gate their genetic material before replication has been
completed, which would result in genomic instability,

these two processes are separated in time; chromosome
replication occurs during S-phase while segregation of
the replicated chromosomes occurs during M-phase.
Cells have developed elaborate mechanisms that control
both the initiation of DNA replication and that ascertain
that DNA replication takes place only once per cell cycle,
and Cdk1 has a central role in these events (Fig. 4, for
reviews see [276-278]).

Cells prepare for DNA replication during early G1
phase, when they assemble pre-replication complexes
(pre-RCs) onto their origins of replication in a process
termed origin licensing, which renders the origins com-
petent to initiate DNA synthesis [276,277]. The pre-RC is
assembled onto a foundation of the six-subunit, ATP-
binding Origin Recognition Complex (ORC, consisting of
Orc1, Orc2, Orc3, Orc4, Orc5 and Orc6) present at repli-
cation origins [279]. ORC is involved in recruitment of
the ATPase Cdc6, Cdt1 and the Mcm2-7 complex [279-
281]. The Mcm2-7 complex (consisting of Mcm2, Mcm3,
Mcm4, Mcm5, Mcm6 and Mcm7) functions as an ATP-
dependent helicase that unwinds DNA and which is
involved in both initiation of DNA replication and repli-
cation fork progression [279,280]. Mcm2-7 is recruited to
the origin by ORC and Cdc6 independently of ATP
hydrolysis. ATP hydrolysis by Cdc6 then stimulates the
stable association of Mcm2-7 with origin DNA, after
which ATP hydrolysis by ORC allows the cycle to begin
again, resulting in loading of multiple Mcm2-7 complexes
per origin [282,283]. Finally, a more recently identified
complex called GINS associates with the Mcm2-7 heli-
case and is required for the initiation of chromosome
replication and also for the normal progression of DNA
replication forks [284].

After the pre-RCs have been assembled at the origins of
replication, a transition takes place from pre-RC to pre-
initiation complex (pre-IC), and this process is believed
to be initiated by activation of Clb5,6-Cdk1 upon
destruction of Sic1 [23,72]. A key player in pre-IC forma-
tion is Cdc45, which is recruited to the origin in a manner
dependent on Clb-Cdk1 activity [285,286] and which is
required for initiation of replication [287-290]. Another
kinase that acts together with Cdk1 is Dbf4-dependent
kinase (DDK, a dimer of the regulatory subunit Dbf4 and
the kinase Cdc7), which phosphorylates the Mcm2-7
complex, resulting in recruitment of Cdc45
[286,291,292]. Cdc45 is required for recruiting DNA
polymerase alpha onto chromatin, and it also associates
with RPA and DNA polymerase epsilon [286]. Associa-
tion of DNA polymerases alpha and epsilon with origins
requires the replication protein Dpb11, a subunit of DNA
polymerase epsilon holoenzyme [293].

Initiation of DNA replication follows pre-IC formation,
and is induced by Cdk1-mediated phosphorylation of the
proteins Sld2 and Sld3 [294-296]. Phosphorylation of
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Sld2 on several Cdk1 consensus sites exposes a key resi-
due, T84, and Cdk1-mediated phosphorylation of this
residue induces binding to the BRCT repeats of Dpb11
[297]. Furthermore, phosphorylation of Sld3 on T600 and
S622 enhances its interaction with the BRCT repeats of
Dpb11 [295]. Because Sld3 interacts with Cdc45 [298],
the phosphorylation of Sld2 and Sld3 results in assembly
of a complex consisting of Sld2, Sld3, Cdc45 and Dpb11
at the origin, and this constitutes the phosphorylation-
dependent switch that triggers DNA replication
[295,296], although the exact molecular mechanism of
initiation of DNA replication by the Sld2-Sld3-Dpb11
complex still remains to be established. The requirement
for Cdk1 in replication can be bypassed by expression of
Sld2 containing a phosphomimetic mutation of the Cdk1
phosphorylation site sld2-T84D in combination with
expression of a Sld3-Dpb11 chimera, and together with
overexpression of Dbf4 this yields sufficient levels of
DDK activity to induce DNA replication in G1 [296].
Finally, re-setting the cell for a new round of DNA repli-
cation in the next cell cycle may be mediated by the phos-
phatase Cdc14, which dephosphorylates DNA replication
factors including Sld2, Pol12 and Dpb2 [299,300].
Preventing re-replication
In eukaryotic cells, DNA replication is limited to once per
cell cycle because licensing only occurs in the window of

low Cdk1 activity, i.e. from late mitosis through early G1
phase [276], and up-regulation of Cdk1 activity through-
out the rest of the cell cycle is essential for preventing re-
replication of DNA. Cdk1 targets at least three compo-
nents of the pre-RC to prevent re-replication: the ORC
complex, Cdc6 and the Mcm2-7 complex, and only
simultaneous uncoupling of all three components from
negative regulation by Cdk1 is sufficient to trigger re-rep-
lication [301]. Orc2 and Orc6 (and possibly also Orc1) are
phosphorylated by Clb-Cdk1 [301], although it is not
clear exactly how these modifications inhibit ORC func-
tion; this phosphorylation probably does not affect the
DNA binding activity of ORC since in S. cerevisiae ORC
remains bound to origins throughout the cell cycle [302].
Data from Drosophila indicate that ORC phosphorylation
may inhibit the intrinsic ATPase activity of ORC [303],
thus possibly interfering with loading of Mcm2-7, and a
recent report showed that phosphorylation of S. cerevi-
siae Orc2 may inhibit ATP binding by Orc5, thus pre-
venting loading of the Mcm2-7 complex [304]. Another
key factor targeted by Cdk1 to prevent re-replication is
Cdc6, which is only present in the cell for a limited time
during the cell cycle [276,305], and several mechanisms
restrict Cdc6 to G1 phase. The CDC6 gene is part of the
MCM cluster of cell cycle regulated genes that is tran-
scribed in late M phase, peaking at the M/G1 transition

Figure 4 Cdk1 and regulation of DNA replication. During G1 phase of the cell cycle, when Cdk1 is inactive, cells assemble pre-RC complexes onto 
their origins of replication. When Cdk1 becomes active at the end of G1 phase it phosphorylates several components of the complex, and especially 
phosphorylation of Sld2 and Sld3 results in origin firing and initiation of DNA replication. After origin firing, several components dissociate and cannot 
re-assemble into replication-competent origins until they become dephosphorylated and Cdk1 becomes inactivated during G1, thus providing a 
mechanism for prevention of re-replication.
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(see section 'Cdk1 and transcriptional programs'). In
addition to its confined expression, Cdc6 incorporation
into pre-RCs is blocked by Clb-Cdk1 so that it can no lon-
ger promote initiation of DNA replication [306]. Cdk1
directly phosphorylates Cdc6, which leads to ubiquitin-
mediated proteolysis by the SCF during late G1 through S
phase [307-312]. In addition, the mitotic Clb2-Cdk1 com-
plex stably binds to Cdk1-phosphorylated Cdc6, thus pre-
venting the binding of Cdc6 to the ORCs during M phase
until Clb2 is destroyed by the APC [313]. Conversely, the
interaction between Cdc6 and Clb2-Cdk1 also inhibits
Cdk1 activity [314], and Cdc6 may contribute to exit from
mitosis, which is triggered by inactivation of Cdk1 [314-
317] (also see section 'Cdk1 and exit from mitosis').
Finally, Cdk1 targets the Mcm2-7 complex to prevent re-
replication by excluding it from the nucleus outside G1
phase [318,319]. Nuclear accumulation of Mcm2-7 is
dependent on two partial NLS sequences in Mcm2 and
Mcm3, that when brought together form a potent NLS
that targets the entire Mcm2-7 complex to the nucleus
[320], and Cdk1-mediated phosphorylation of the NLS
portion of Mcm3 prevents nuclear import of the Mcm2-7
complex and inhibits initiation of DNA replication [320].

Perhaps surprisingly, while checkpoints exist that arrest
or slow the cell cycle during DNA damage or DNA repli-
cation stress (see section 'Cdk1 in checkpoint activation
and DNA repair'), ensuring that chromosome segregation
does not start until the checkpoint activating stress has
been resolved [321], no mechanisms are known that
monitor completion of DNA synthesis. In fact, based on
the finding that smc6-9 mutants, which are proficient in
DNA damage and replication checkpoints but fail to rep-
licate rDNA, enter anaphase with identical kinetics as
wild-type cells (despite the presence of a large amount of
unreplicated rDNA), it has been suggested that cells do
not monitor completion of DNA replication [322,323].
Rather, cells may simply wait a certain amount of time
between onset of DNA replication and DNA segregation
[323]. However, this is not likely to be an adequate expla-
nation, because swe1Δ mutants, which have elevated
Cdk1 activity and enter mitosis prematurely [84], do not
have a <1n DNA content [84]. Furthermore, segregation
of incompletely replicated chromosomes would result in
DNA damage and chromosome instability, but in swe1Δ
mutants neither chromosome rearrangements (which
arise frequently in mutants with defects in DNA replica-
tion and repair) nor formation of Rad52 foci (which are
indicative of broken DNA) are observed [324,325].
Although the possibility exists that cells indeed do not
monitor completion of DNA replication, these studies
indicate that it is unlikely that cells simply wait for a cer-
tain amount of time after DNA replication is finished
before blindly entering mitosis.

Cdk1 and chromosome segregation
In addition to DNA replication, a second cell cycle event
is crucial for faithful transmission of genetic material
from one generation to the next: segregation of the repli-
cated genomes into the daughter cells. Successful segre-
gation of the genetic material involves several important
processes such as chromosome condensation, chromo-
some cohesion and dissolution, assembly of the mitotic
spindle, attachment of chromosomes to the spindle, spin-
dle elongation and separation of chromosomes, mitotic
exit, and cytokinesis. As we will discuss below, Cdk1
plays important roles in several of these processes (Fig. 5).
Chromosome cohesion and condensation
As DNA replication takes place, an essential process
termed chromosome cohesion ensures that sister chro-
matids are held together until anaphase. Chromosome
cohesion prevents premature separation of sister chro-
matids and is carried out by the cohesion complex. The
core of the cohesion complex is a heterodimer of Smc1
and Smc3, which binds Scc1 and Scc3 [326]. Chromo-
some cohesion is cell cycle regulated and several steps
can be distinguished [326]: (i) loading of cohesin onto
chromatin (which occurs before onset of S phase) by the
Scc2-Scc4 complex; (ii) conversion of cohesin to a cohe-
sive state (establishment of cohesion) in a manner that
depends on Eco1 and which occurs concomitantly with
DNA replication; and (iii) stabilization and maintenance
of cohesion. Genetic studies have indicated that chromo-
some cohesion is at least in part dependent on CDK1 and
that CDK1 may function upstream of SCC1 [327]. Indeed,
mutations that reduce Cdk1 activity lead to chromosome
cohesion defects [328,329]. The molecular target of Cdk1
in chromosome cohesion remains elusive. Eco1 is an
attractive candidate because it is required for establish-
ment for cohesion and it is a good target of Cdk1 in vitro
[126], however mutation of the Cdk1 consensus sites in
Eco1 does not affect chromosome cohesion [329]. Scc1
could also be a good candidate, because (i) Cdk1 activity
appears to be required for Scc1 activity; (ii) Scc1 is a regu-
latory component of the cohesin complex and is a com-
mon target of several kinases that modulate chromosome
cohesion including Chk1 and polo kinase [330,331]; and
(iii) in S. pombe Rad21 (S.p. Scc1) is phosphorylated by
Cdk1 [332], although the consequences of this phospho-
rylation remain unknown.

Dissolution of cohesion takes place at anaphase, when
all the chromosomes are properly bi-oriented on the
metaphase plate and attached to the mitotic spindle,
which induces activation of the anaphase promoting
complex (APC). The APC degrades a protein called secu-
rin (Pds1 in budding yeast), which is an inhibitor of sepa-
rase (Esp1). Esp1 is a protease that cleaves Scc1, resulting
in disruption of cohesion, which is a prerequisite for
chromosome segregation [333]; thus, Pds1 functions to
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prevent precocious chromosome segregation during ear-
lier stages of M phase [333]. Importantly, dissolution of
chromosome cohesion is inhibited by Cdk1, because
Cdk1 phosphorylates Pds1, thus protecting it from APC-
mediated ubiquitination and subsequent degradation
[334]. Only when cells are ready to enter anaphase (when
all the chromosomes have attached to the spindle, creat-
ing tension on the spindle that satisfies the spindle assem-
bly checkpoint [335]), Pds1 becomes dephosphorylated
and is then promptly ubiquitinated by the APC. Subse-
quently, Pds1 degradation results in activation of Esp1,
which cleaves cohesins to allow chromosome separation
to take place. Furthermore, phosphorylation of Pds1 on a
different set of Cdk1 sites is required to localize Esp1 to
the nucleus, which may allow rapid activation of Esp1
once Pds1 becomes degraded [336]. As we will discuss in
more detail in section 'Cdk1 and exit from mitosis',
Cdc14-mediated dephosphorylation of the various Cdk1
sites of Pds1 creates a feedback loop that contributes to
the switch-like behavior of anaphase onset, thus promot-
ing synchronization of chromosome dissolution and sep-
aration by the spindle [334].

When cells enter M phase, the chromosomes condense
to facilitate their segregation during anaphase. Chromo-
some condensation is mediated by the Smc2-Smc4 com-
plex, which is structurally similar to the cohesin complex.

Chromosome condensation is induced by CDK activity in
vertebrates [337], in Xenopus egg extracts [338], and in S.
pombe by phosphorylation of T19 on Cut3 (S. pombe
Smc4). It is currently unknown whether Cdk1 is involved
in stimulating condensin in S. cerevisiae, but it seems
likely because Cdk1-induced chromosome condensation
is evolutionarily conserved between Xenopus and S.
pombe. An indication for an involvement of Cdk1 in reg-
ulation of the condensin complex comes from a recent
study that followed decondensation of rDNA upon exit
from mitosis [339]. In S. cerevisiae, rDNA condenses into
a compact structure during M phase and this requires the
binding of condensin [340-342]. When cells exit from
mitosis (during which time Cdk1 becomes inactivated
due to destruction of cyclins and expression of Sic1) the
condensin component Brn1 is released from the rDNA,
leading to rDNA decondensation [339]. Interestingly, the
release of Brn1 from rDNA is inhibited by Cdk1, because
when Cdk1 is artificially inactivated in anaphase-arrested
cells, Brn1 is prematurely released from the rDNA; con-
versely, artificially sustaining Cdk1 activity during telo-
phase results in delayed release of Brn1 [339]. Therefore,
Cdk1 may either promote the association of condensin to
rDNA or it inhibit its release; however, it is unclear what
the relevant target of Cdk1 in this process is.

Figure 5 Cdk1 controls proteins involved chromosome segregation. Cdk1 controls chromosome cohesion by phosphorylating Pds1 and possi-
bly the cohesin Scc1. Assembly of the mitotic spindle is also controlled by Cdk1, because it phosphorylates Spc42 and Mps1, which is important for 
SPB duplication, as well as Spc110, which may play a role in attachment of the SPB to the mitotic spindle. Cdk1 also prevents SPB re-duplication, but 
the molecular mechanism remains to be determined. Spindle positioning is mediated by Cdk1-dependent phosphorylation of Kar9, the SPB compo-
nent Cnm67, and possibly Stu2. Later in the cell cycle Cdk1 phosphorylates Ase1, Bir1, Fin1 and Sli15 to modulate spindle stability and elongation.
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Regulation of spindle pole bodies
A crucial step in chromosome separation is assembly and
alignment of the mitotic spindle, which partitions sister
chromosomes to opposite poles. The division axis of the
cell coincides with the mother-bud axis in budding yeast
and is defined before formation of the mitotic spindle.
Alignment of the spindle along this division axis and spa-
tial coordination of spindle position with the cleavage
apparatus is crucial to ensure proper inheritance of nuclei
during cell division [343]. Both the assembly and align-
ment of the mitotic spindle are regulated by the spindle
pole body (SPB; the S. cerevisiae microtubule-organizing
center, or MTOC), which is inserted in the nuclear enve-
lope [344]. The SPB is a cylindrical organelle that appears
to consist of three plaques when visualized using EM: an
outer plaque that is exposed to the cytoplasm and associ-
ates with cytoplasmic (astral) microtubules; an inner
plaque that is exposed to the nucleoplasm and which
associates with nuclear microtubules that in a later stage
form the mitotic spindle; and a central plaque that spans
the nuclear membrane to connect the inner and outer
plaques [344]. One side of the central plaque is associated
with a region of the nuclear envelope termed the half-
bridge [344], a structure that is important for SPB dupli-
cation. SPB duplication takes place in several steps: First,
the half-bridge elongates and deposits so-called satellite
material, which serves as a seed for development of a new
SPB; the second step is expansion of the satellite into a
duplication plaque, after which the half-bridge retracts;
the third step is insertion of the duplication plaque into
the nuclear envelope and subsequent assembly of the
inner plaque [344]. Finally, the bridge that still connects
the old and new SPBs is severed, after which the SPBs
move to opposite sides of the nuclear envelope. While it
is beyond the scope of this review to discuss the structure
and function of SPBs in further detail, we will highlight
two Cdk1-controlled aspects of SPBs, i.e. SPB duplication
and separation. An involvement for Cdk1 in duplication
of spindle pole bodies was apparent from the analysis of
the Hartwell cdc collection using electron microscopy
[345], but it was not until recently that a key target of
Cdk1 in this process, Spc42, was identified [346]. Spc42 is
a protein that is essential for SPB duplication and which is
thought to self-assemble to form a plaque [347,348]. It is
present throughout the cell cycle and is phosphorylated
during late G1 in a manner dependent on Cdk1 [347]. In
addition to Cdk1, Mps1 is another kinase involved in SPB
duplication [349], and Mps1 directly phosphorylates
Spc42 [344]. Cdk1 directly phosphorylates both Spc42
and Mps1 [346]; Cdk1-mediated phosphorylation of
Spc42 on S4 and T6 stimulates its insertion into the SPB,
while Cdk1-mediated phosphorylation of Mps1 on T29
increases Mps1 stability. While an spc42 mutant in which
both Cdk1 phosphorylation sites have been mutated to

alanine can still duplicate SPBs, additional mutation of
the Cdk1 site in Mps1 leads to poor viability of haploid
cells and lethality of diploid cells [346]. In addition to
phosphorylating Spc42 and Mps1, Cln-Cdk1 also stimu-
lates the expression of SPB components by regulating SBF
and MBF (see section 'Cdk1 and transcriptional pro-
grams'), thus contributing to SPB duplication. Notably, in
a later stage of the cell cycle, mitotic Cdk1 (associated
with either of Clb1,2,3,4) prevents re-duplication of the
SPBs [350,351], which is important to prevent formation
of a multipolar spindle due to the presence of more than
two SPBs, which could result in missegregation of chro-
mosomes and genomic instability. The exact molecular
mechanism and the Cdk1 targets that participate in pre-
venting re-duplication of SPBs remain unknown.

In addition to Spc42, the SPB component Spc110 also
undergoes cell cycle-dependent phosphorylation, and
similar to Spc42 this is mediated by both Mps1 and Cdk1
[352-354]. In particular, Clb-Cdk1 phosphorylates
Spc110 on S36 and S91, and alanine substitutions of these
sites cause mild spindle integrity problems, which lead to
a spindle checkpoint-mediated mitotic delay [354]. The
exact function of Spc110 phosphorylation by Mps1 and
Cdk1 is not clear, but it may modulate the interaction
between the microtubule-nucleating Tub4p complex and
the SPB [353].

After duplication of the SPB, separation of the old and
new SPBs in late S phase is crucial for successful assembly
of the mitotic spindle and this is triggered by severing the
bridge that connects the sister SPBs. After separation, the
SPBs position themselves on the nuclear membrane such
that they face each other, being separated by intercon-
necting microtubules to form what is generally referred
to as a short spindle [355]. Separation of SPBs requires
the kinesins Cin8 and Kip1 [356,357]; any of the cyclins
Clb1,2,3,4 [358]; and dephosphorylation of Y19 of Cdk1
(phosphorylation of this residue by Swe1 inhibits Cdk1
activity) by Mih1 [359]. It was recently shown that
dephosphorylation of Y19 of Cdk1 results in stabilization
of Cin8, Kip1, and the spindle midzone component Ase1,
which are thought to drive separation of SPBs by generat-
ing force, possibly by bundling microtubules [360]. Stabi-
lization of these proteins is due to inhibition of the APC,
which in absence of Cdk1 activity targets Cin8, Kip1 and
Ase1 for destruction, and Cdk1 directly phosphorylates
several APC components and inhibits the activity of the
APC [360] (also see section 'Cdk1 and exit from mitosis').
Only when the balance between Swe1-mediated phos-
phorylation and Mih1-mediated dephosphorylation of
Y19 on Cdk1 shifts towards a dephosphorylated state can
Cdk1 phosphorylate and inhibit the APC, stabilizing
Cin8, Kip1 and Ase1 and thereby driving SPB separation
[361].
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Attachment of chromosomes to the mitotic spindle
While the new SPB is still maturing, the nuclear microtu-
bules emanating from the old SPB start capturing kineto-
chores. Kinetochores are large protein complexes that are
formed on chromosome regions known as centromeres,
DNA sequences of approximately 130 bp that contain the
histone variant Cse4 (CENP-A in metazoans) [362-365].
Several protein complexes assemble onto the centromere,
including (but not limited to) the Cbf3 complex, which
directly binds to centromere DNA; the Ndc80 complex;
the MIND complex; and the COMA complex [364].
While these complexes are involved in capture of micro-
tubules, the attachment of microtubules to kinetochores
is thought to be stabilized by the Dam1 complex (also
known as the DASH complex) [364,366]. The chromo-
somal passenger complex consisting of the kinase Ipl1
(Aurora kinase) in complex with Sli15, Bir1 and Nbl1
phosphorylates Dam1 to facilitate the turnover of kineto-
chore-microtubule attachment until bi-orientation (bind-
ing of kinetochores to microtubules with opposite
orientation) generates tension on kinetochores [367-369].
In addition to Dam1 phosphorylation by Ipl1, Cdk1 phos-
phorylates Ask1, another component of the Dam1 com-
plex, on S216 and S250 during the S, G2 and M phases of
the cell cycle [370]. Alanine substitution of these sites had
little effect on cell viability when they were introduced
into otherwise wild-type Ask1; however, when S216A and
S250A substitutions were introduced into Ask1-3 (which
is encoded by the temperature-sensitive ask1-3 allele), the
result was exacerbated temperature-sensitivity [370]. In
addition, the ask1-3 allele genetically interacted with
hypomorphic cdk1 alleles, indicating that Cdk1 may
function in attachment of microtubules to kinetochores
[370]. While experimental evidence is lacking, Cdk1 may
also affect this process by controlling the stability of
Mps1 [346], which has recently been shown to be
involved in kinetochore attachment [371].
Spindle positioning
Another important step in assembly of the mitotic spin-
dle is spindle positioning, which involves alignment along
the mother-daughter axis of division and placement at
the bud neck [343,372-375]. Spindle positioning requires
both the cytoplasmic microtubules that originate from
SPBs as well as actin cables [376-378]. The initial align-
ment of the spindle requires asymmetric loading of Kar9
[233,379,380]; Kar9 localizes only to the SPB that is des-
tined for the daughter cell, but not the mother-bound
SPB. Loading of Kar9 onto the SPB appears to be regu-
lated by microtubule-associated proteins (MAPs) Stu2
and Bim1. The Kar9-Bim1 complex is transported by
kinesin from the minus ends of the cytoplasmic microtu-
bules that emanate from the SPB to the tips of the micro-
tubule plus ends located at the prospective daughter cell
spindle pole [233]. Upon arrival at the plus ends of the

microtubules Kar9 interacts with the actin-associated
myosin Myo2, which then pulls Kar9 and the associated
microtubule into the bud along actin cables that are
polarized towards the bud (see section 'Cdk1 and cell
morphogenesis'). After arrival at the bud, the microtu-
bules are thought to be captured and linked to the bud
cortex via Bud6 [381]. During anaphase, the final posi-
tioning of the spindle along the cell polarity axis is facili-
tated by the dynein-dynactin motor complex (targeted
towards microtubule minus-ends), which pulls microtu-
bules that are attached to the daughter-bound SPB
through the bud neck [382-384]. The dynein-dynactin
complex is recruited to the SPB by Bik1, which interacts
with kinesin to promote transport of the dynein-dynactin
complex to microtubule plus-ends [375]. Furthermore,
like Kar9, the dynein-dynactin complex is also asymmet-
rically localized to the daughter-bound SPB, and the
asymmetric localization of both Kar9 and dynein-dynac-
tin contributes to correct positioning of the spindle.
Importantly, the asymmetric loading of both Kar9 and
dynein-dynactin is controlled by Cdk1, although the
exact mechanism of Kar9 localization is still being
debated [233,379,385]. Asymmetric loading of Kar9 was
initially reported to be dependent upon its phosphoryla-
tion by Clb3,4-Cdk1 [233]. Another report doubted that
Clb4 had an important role and suggested that it is Clb5-
Cdk1 that mediates Kar9 localization instead [385]. More
recent data indicate that both Clb4-Cdk1 and Clb5-Cdk1
complexes target different residues on Kar9; Clb5-Cdk1
may phosphorylate S496 while Clb4-Cdk1 may phospho-
rylate S197 [386]. The function of S496 phosphorylation
may be to localize Kar9 to the SPB, while S197 phospho-
rylation might release Kar9 from Stu2, thus liberating it
from the SPB [386]. Stu2 itself may also be a Cdk1 target,
although the functional relevance of this phosphorylation
is currently unclear [126,387]. While Cdk1-mediated
phosphorylation of Kar9 is crucial for its asymmetric
loading, the nature of the molecular determinants that
mediate asymmetry remains unknown. It has been spec-
ulated that this may involve a daughter SPB-specific pro-
tein that binds phosphorylated Kar9 [380,386].
Alternatively, Cdk1 could have differential activities at the
two SPBs, because Cdk1 is known to localize to SPBs and
the localization and/or activity of cyclins Clb3 and Clb4
appear to be asymmetric as well [233,379], however the
molecular basis for asymmetric Cdk1 activity is poorly
understood. It is clear that the exact mechanism of asym-
metric localization of Kar9 and the different Clb-Cdk1
complexes still remains to be established, and regarding
its complexity and importance to the cell it likely involves
the input from additional signaling pathways. Given that
many processes that are controlled by the cell cycle
involve feedback signaling, it would not be surprising if
Kar9 affected Cdk1 activity to synchronize positioning of
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the spindle with cell cycle progression. It will be interest-
ing to see how future studies will impact our current
understanding of these processes.

Compared to Kar9, the asymmetric localization of the
dynein complex occurs later in the cell cycle and depends
on the mitotic cyclins Clb1,2 rather than Clb3,4 [388].
The activity of Clb1,2-Cdk1 on the dynein complex
ensures unidirectional movement of the nucleus into the
bud neck [389]. Cdk1 becomes inactivated during ana-
phase when Clb1,2 are destroyed and the phosphatase
Cdc14 dephosphorylates Clb-Cdk1 targets, and this is
thought to result in symmetric localization of the dynein
complex to both SPBs, leading to movement of the two
SPBs away from each other and elongation of the spindle
[388,389]. The relevant Cdk1 target that mediates asym-
metric localization remains unknown. Cnm67, a protein
associated with the SPB, is required for the asymmetric
localization of both the dynein complex as well as Clb2-
Cdk1, and although it is phosphorylated on multiple sites
by Clb2-Cdk1 in vivo, these phosphorylations are not
required for dynein localization [388].
Spindle elongation
When all chromosomes have properly bi-oriented to cre-
ate tension on the spindle and when the spindle is prop-
erly positioned, anaphase is triggered by Esp1/separase-
mediated cleavage of the cohesin complexes, leading to
spindle elongation. During this stage, the mitotic spindle
is thought to be stabilized by Fin1, a self-associating
coiled-coil protein that can form filaments between SPBs
[390,391]. Fin1 is phosphorylated by Clb5-Cdk1 from S
phase through metaphase [391,392], which inhibits the
association of Fin1 with the spindle until Fin1 is dephos-
phorylated in anaphase due to degradation of Clb5 and
activation of the phosphatase Cdc14 [392]. Fin1 dephos-
phorylation targets it to the poles and microtubules of the
elongating spindle, where it contributes to spindle integ-
rity and contributes to efficient chromosome segregation
[392]. Fin1 is destroyed by the APC once cells have com-
pleted mitosis and started to disassemble the spindle
[392].

Cdk1 also contributes to mitotic spindle stabilization
and elongation by phosphorylating several components
of the chromosomal passenger complex, which consists
of Ipl1, Bir1, Sli15 and Nbl1, and which initially localizes
to kinetochores to regulate their bi-orientation, but
which relocalizes to the mitotic spindle during anaphase
to control spindle stabilization and elongation. Cdk1
phosphorylates the passenger complex component Bir1
[393], resulting in recruitment of Ndc10, an inner kineto-
chore protein that binds to the centromere [394] but
which relocalizes to the spindle midzone (the part of the
mitotic spindle that constitutes interpolar microtubules
that interdigitate between the two spindle poles to form
an antiparallel microtubule array) in anaphase to promote

spindle elongation [395]. Mutating the Cdk1 phosphory-
lation sites in Bir1 results in loss of Ndc10 from the ana-
phase spindle, increased chromosome loss and a defect in
spindle elongation [393]. Furthermore, during metaphase
Cdk1 phosphorylates Sli15 (inner centromere-like pro-
tein, or INCENP) within its microtubule-binding domain,
which prevents its relocalization to the spindle. However,
during anaphase the phosphatase Cdc14 dephosphory-
lates Sli15, resulting in relocalization of Sli15-Ipl1 to the
spindle where it contributes to spindle stabilization [396].
Finally, another key Cdk1 target in organization of the
mitotic spindle is Ase1, a microtubule bundling factor
and a core component of the spindle midbody [397] that
may also be involved in SPB separation. Cdk1 phosphory-
lates and inhibits Ase1 during metaphase, while during
early anaphase dephosphorylation of Ase1 by Cdc14 pro-
motes assembly of the spindle midzone [398,399]; mid-
zone assembly is an important step in spindle elongation.

In conclusion, Cdk1 affects the assembly of the mitotic
spindle in multiple ways: by controlling SPB duplication
and separation, by positioning the spindle, by modulating
kinetochore biorientation, and by promoting the assem-
bly of the spindle midzone as well as stabilization and
elongation of the mitotic spindle.

Cdk1 and exit from mitosis
The final steps of mitosis encompass an ordered series of
events referred to as mitotic exit, which mediates the
inactivation of Cdk1 and the dephosphorylation of key
Cdk1 targets to reset the cell cycle (Fig. 6, for recent
reviews see [400-403]). It starts with the separation of sis-
ter chromatids during anaphase upon Esp1-mediated loss
of chromosome cohesion and involves elongation of the
mitotic spindle. Once chromosome segregation is com-
plete, the cytokinetic furrow is formed at the future site of
cell division, the spindle disassembles, and cell division is
completed by cytokinesis and abscission. During the past
decade, tremendous progression has been made towards
unraveling the molecular mechanisms that mediate
mitotic exit, although it should be emphasized that the
picture is far from complete. Here we focus mostly on the
function of Cdk1 in mitotic exit.

Anaphase is triggered by ubiquitination and thereby
proteasomal degradation of Pds1 (securin) by the APC,
relieving inhibition of Esp1/separase, which subsequently
cleaves the cohesion complex that holds together the sis-
ter chromatids. Simultaneously, the APC targets mitotic
cyclins for destruction, leading to downregulation of
mitotic Cdk1 activity, and destruction of Clb2 is particu-
larly important for mitotic exit [404-406]. Further inhibi-
tion of Cdk1 activity is mediated by expression of the
Cdk1 inhibitor Sic1, which occurs at the M-G1 boundary
[404,406,407], and a feedback loop involving Sic1 ensures
that mitotic exit is irreversible by preventing re-synthesis



Enserink and Kolodner Cell Division 2010, 5:11
http://www.celldiv.com/content/5/1/11

Page 20 of 41
of mitotic cyclins [408]. In addition, Cdc6 has been
reported to have a similar function in inactivation of
Cdk1 by directly binding and inhibiting Clb-Cdk1 com-
plexes [316,317]. However, Cdc6 may modulate mitotic
exit at least in part through a Cdk1-independent mecha-
nism by affecting the activity of the APC [314,315], and in
addition Cdc6 may be less important for mitotic exit
[316] than previously reported [317]. Finally, the phos-
phatase Cdc14 reverses phosphorylation of Cdk1 targets

to reset the cell cycle to a basic G1 state; the activity of
Cdc14 is paramount to mitotic exit [402,403], and in
absence of Cdc14 activity cells arrest before cytokinesis in
a telophase-like state with long spindles and a divided
nucleus [409,410].

Cdk1 induces mitotic exit - and thus its own inactiva-
tion - by affecting the activity of the APC. APC activity
fluctuates throughout the cell cycle in response to differ-
ential association with the activating subunits Cdc20 and

Figure 6 The interplay between Cdk1 and mitotic exit. Phosphorylation of Pds1 by Cdk1 results in nuclear import of the inactive Pds1-Esp1 com-
plex, while phosphorylation of Pds1 on other Cdk1 sites protects it from degradation until cells are ready to initiate anaphase. Activation of the FEAR 
pathway and anaphase onset are encouraged by dephosphorylation of Cdk1 sites on Pds1 by the phosphatase Cdc14, which leads to degradation of 
Pds1 by the APC. Liberated from its inhibitor, Esp1 can now cleave cohesins and inhibit the phosphatase PP2ACdc55. Downregulation of PP2ACdc55 shifts 
the balance from unphosphorylated Net1 to phosphorylated Net1, which is mediated by both Cdc5 as well as Cdk1, and results in dissociation of 
Cdc14 from Net1 and its release from the nucleolus. The release of a small amount of Cdc14 creates a positive feedback loop (green arrow) in which 
Cdc14 further dephosphorylates and thereby destabilizes Pds1, thus releasing more Cdc14. Downregulation of PP2ACdc55 also leads to a shift in the 
balance of unphosphorylated, active Bfa1-Bub2 to phosphorylated, inactive Bfa1-Bub2 (mediated by Cdc5), and downregulation of the GAP activity 
of Bub2 permits activation of the small GTPase Tem1. Lte1 may not directly activate Tem1, but rather indirectly through inhibiting Bfa1 by regulating 
its localization (dashed lines). Activation of Tem1 triggers the MEN, which provides the sustained Cdc14 activity that is necessary to exit from mitosis. 
Full activation of the MEN also requires dephosphorylation of the Cdk1 sites on Cdc15 and Mob1 by Cdc14.
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Cdh1 (Hct1): during mid-mitosis it associates with
Cdc20, leading to the initiation of anaphase, whereas dur-
ing late mitosis it associates with Cdh1, and the APCCdh1

complex stays active throughout the subsequent G1
[411]. APCCdc20 and APCCdh1 have different substrate
specificity; e.g. APCCdc20 targets Pds1 and APCCdh1 tar-
gets Ase1, while both APCCdc20 and APCCdh1 are required
for full degradation of Clb2 [405,406,412]. There is exten-
sive interplay between Cdk1 and APC activity; APCCdh1

degrades mitotic cyclins to inhibit Cdk1 activity
[360,413,414], but upon entry of cells into S phase Cln1,2-
Cdk1 and Clb5-Cdk1 phosphorylate Cdh1, blocking its
interaction with the APC and thus allowing mitotic
cyclins to build up again later in the cell cycle [413-415].
The interaction between Cdh1 and the APC is further
inhibited by Cdk1-mediated phosphorylation and stabili-
zation of Acm1, which inhibits Cdh1 by acting as a pseu-
dosubstrate inhibitor [416-418]. Then at the end of
mitosis Cdc14 dephosphorylates Cdh1, allowing it to
interact with the APC again to destroy mitotic cyclins,
thus completing the cycle [414,419]. Cdk1 is also required
for activation of APCCdc20 during mitosis [420,421], which
initiates the metaphase to anaphase transition by degrad-
ing Pds1 [406,422]. Cdk1 activates APCCdc20 by phospho-
rylating three components of the APC, Cdc16, Cdc23 and
Cdc27, resulting in binding of Cdc20 to the APC [421].
Activation of APCCdc20 results in degradation of Pds1,
leading to activation of Esp1 and thereby dissolution of
chromosome cohesion, but it also leads to activation of
the so-called FEAR (Cdc fourteen early anaphase release)
network which results in transient activation of the phos-
phatase Cdc14 [422-424] (Fig. 6). Activation of the FEAR
network is followed by activation of the mitotic exit net-
work (MEN), which promotes sustained Cdc14 activity
[402].

During most of the cell cycle, Cdc14 is sequestered in
the nucleolus by Net1 (also known as Cfi1) [425,426]. The
FEAR pathway is triggered by Esp1/separase-induced
downregulation of the phosphatase PP2ACdc55, which is
apparently independent of the proteolytic function of
Esp1 [427,428]. PP2ACdc55 keeps Net1 in a hypophospho-
rylated state, which promotes the interaction between
Net1 and Cdc14 [428,429]. When Pds1 becomes
degraded in early anaphase, Esp1 downregulates
PP2ACdc55, resulting in a shift in the phosphorylation bal-
ance of Net1 to a hyperphosphorylated state due to the
action of Clb1,2-Cdk1 and Cdc5 [430-432]. Phosphoryla-
tion of Net1 abrogates the interaction with Cdc14 [430-
432], which is then released from the nucleolus into the
nucleus and cytoplasm to dephosphorylate Cdk1 targets.
The FEAR network also encompasses additional proteins,
such as the Esp1-associated protein Slk19; Tof2, which
bears homology to Net1 [433]; Fob1, a nucleolar protein

that localizes to rDNA and which interacts with Net1;
and Spo12. Slk19 is a Cdk1 target, but the relevance of
this is not well understood [387]. Fob1 forms a complex
with Net1 and Spo12, and phosphorylation of Spo12 by
Cdk1 contributes to activation of the FEAR pathway
[423,434,435].

The initial release of Cdc14 is not sufficient for comple-
tion of mitotic exit, because when Cdk1 activity starts to
drop during anaphase, Net1 could become hypophospho-
rylated again, which would then result in premature
return of Cdc14 to the nucleolus before mitotic exit has
been completed [423,428]. To circumvent this problem,
cells activate the MEN to ensure sustained Cdc14 activity
during late anaphase. The MEN pathway integrates infor-
mation from the mitotic spindle with cell cycle progres-
sion [436,437]. A central component of the MEN is a
small Ras-like GTPase named Tem1, which localizes to
the daughter-bound SPB [436-438]. The MEN is thought
to be activated when the daughter-bound SPB moves into
the bud, which is the compartment where Lte1 is located,
a protein with similarity to GTP-exchange factors that
localizes only to the bud and which may induce the activ-
ity of Tem1 [436,437,439]. Lte1 may not directly activate
Tem1, but rather indirectly activates Tem1 by inhibiting
Bfa1, which is an inhibitor of Tem1 [440] (also see below);
the asymmetric localization of Lte1 to the bud cortex is
mediated by Cdk1 and Cla4 [441-443]. Active Tem1 then
activates a signaling cascade by interacting with the
kinase Cdc15, which in turn activates the Mob1-Dbf2
kinase complex [444-448]. Exactly how Mob1-Dbf2 then
promotes Cdc14 release from the nucleolus is not well
understood [403], but it involves direct phosphorylation
of Cdc14 on serine and threonine residues adjacent to a
nuclear localization signal (NLS), thereby abrogating its
NLS activity resulting in nuclear exclusion [449]. This
then promotes mitotic exit.

It is important that the MEN pathway is not activated
before chromosome separation is complete, as this could
result in missegregation of chromosomes. Premature
activation of the MEN pathway is prevented by multiple
means. Tem1 is kept inactive at the SPB by the GAP
Bub2-Bfa1. Like Net1, Bfa1 is kept in a hypophosphory-
lated state by PP2ACdc55 during metaphase, but when
PP2ACdc55 is downregulated by Esp1 during early ana-
phase, the balance shifts towards hyperphosphorylated
Bfa1, which is mediated by Cdc5. Phosphorylation of Bfa1
inhibits its activity and therefore results in activation of
Tem1 and hence mitotic exit. Bfa1 is also regulated by the
spindle positioning checkpoint (SPOC), which delays
mitotic exit when the anaphase spindle fails to extend
toward the mother-daughter axis [450]. When the mitotic
spindle is misaligned, the kinase Kin4 phosphorylates
Bfa1, which prevents phosphorylation and inhibition of
Bfa1 by Cdc5 [451-453]. Because Cdc5 cannot phospho-
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rylate and inhibit Bfa1, Bfa1 continues to block Tem1
activity, thereby preventing mitotic exit. However, during
an unperturbed cell cycle - when the spindle is properly
aligned - Kin4 localizes to the mother SPB, while Bfa1
localizes to the daughter SPB; as a result of this differen-
tial localization, Kin4 cannot phosphorylate Bfa1, which
then becomes phosphorylated by Cdc5 instead, leading to
inhibition of Bfa1, activation of Tem1, and mitotic exit
[453]. Interestingly, the asymmetric localization of Bfa1
was recently reported to be promoted by Lte1 [440].
Thus, Lte1 may activate Tem1 indirectly by inhibiting
Bfa1 rather than directly through its GEF domain [440].

Full activation of the MEN pathway requires Cdc14-
mediated dephosphorylation of Cdc15 and Mob1, both of
which are targets of Cdk1 [454,455]. Phosphorylation of
Cdc15 and Mob1 is inhibitory, and their dephosphoryla-
tion by Cdc14 may contribute to fine-tuning of MEN
activity, but it may also ensure a right order of events,
such that MEN does not take place before activation of
the FEAR network (which releases Cdc14 which can then
dephosphorylate Cdc15). Ultimately, when cells have suc-
cessfully exited from mitosis, Cdc14 is downregulated by
its return to the nucleolus, which is mediated by degrada-
tion of Cdc5 by the APC [456], which results in a shift in
the phosphorylation balance of Net1 and Bfa1 to a hypo-
phosphorylated state.

Cdk1 in maintenance of genome stability
Proper regulation of the cell cycle is required to transmit
a complete and intact copy of the genome from one gen-
eration to the next. Cdk1 commands the cell cycle and as
has become clear in previous sections, it is involved in
many aspects of DNA metabolism. It is therefore not sur-
prising that defects in regulation of Cdk1 have been
found to result in genome instability. The role of Cdk1 on
maintenance of genome stability can be broken down
into two main functions: The first is preventing DNA
damage and genome instability by regulating the pro-
cesses involved in replication and segregation of DNA;
and the second is the regulation of DNA repair processes
after DNA damage has occurred. These two functions of
Cdk1 are not necessarily mutually exclusive; e.g. prema-
ture initiation of DNA replication due to aberrant Cdk1
activity can produce DNA lesions that may subsequently
not be accurately repaired because their repair also
requires proper Cdk1 activity. As discussed in previous
sections, Cdk1 affects a number of processes that could
give rise to genome instability when improperly regu-
lated. In addition, Cdk1 has been found to directly con-
trol a number of targets involved in the DNA damage
response (Fig. 7, also see previous sections). In this sec-
tion we will discuss the role of Cdk1 in maintenance of
genome stability.

Different forms of genome instability exist [457] and
they can roughly be divided into two classes: (i) changes
in chromosome number (often referred to as chromo-
somal instability, or CIN), and (ii) alterations at the DNA
sequence level (which we will refer to as genomic instabil-
ity, or GIN). CIN can be caused by failures in either
mitotic chromosome transmission or the mitotic spindle
checkpoint, resulting in aneuploidy and loss of heterozy-
gosity [335], while GIN can be caused by problems during
DNA replication and repair, resulting in the accumulation
of mutations and genome rearrangements. Some forms of
GIN involve changes at the nucleotide level [458] (e.g.
single base changes, addition or loss of one or several
nucleotides) which can be the result of defects in DNA
repair processes such as mismatch repair (MMR), base
excision repair (BER), nucleotide excision repair (NER),
or by error-prone translesion synthesis. GIN at a larger
scale involves loss or amplification of parts of chromo-
somes, often referred to as gross chromosomal rear-
rangements (GCRs), such as translocations, duplications,
inversions or deletions [459].
Chromosome instability
CIN can be caused by numerous problems during the
mitotic cell cycle. For instance, defects in chromosome
cohesion reduce the fidelity of chromosome segregation
[460-462]. Furthermore, cells with multipolar spindles
(due to an aberrant number of SPBs) as well as merotelic
attachments (i.e. the simultaneous attachment of one
kinetochore to microtubules emanating from both spin-
dle poles rather than a single pole) are likely to missegre-
gate their chromosomes [463-465]. Finally, aneuploidy
can also result from chromosome missegregation pro-
duced by defects in the mitotic checkpoint, which
ensures attachment of all chromosomes to the mitotic
spindle; in mutants with a defective mitotic checkpoint
anaphase initiates before all chromosomes have estab-
lished proper spindle attachments [335,466].

Cdk1 is known to affect chromosome transmission
fidelity, and both aberrantly increased Cdk1 activity, e.g.
in sic1Δ mutants, as well as reduced Cdk1 activity, e.g. in
cdk1 point-mutants, leads to increased rates of chromo-
some loss [73,467-469], indicating that Cdk1 activity
must be carefully balanced throughout the cell cycle in
order to prevent CIN. However, the role of Cdk1 in this
process is not well defined. Cdk1 controls many processes
that could lead to CIN if improperly regulated. For
instance, Cdk1 activity is required for chromosome cohe-
sion, and it prevents premature loss of cohesion by phos-
phorylating and thereby inhibiting Pds1 degradation
[334]. Cdk1 also controls duplication of SPBs early in the
cell cycle while preventing SPB re-duplication later in the
cell cycle, and failure to either duplicate SPBs or to pre-
vent re-duplication may result in monopolar or multipo-
lar spindles and missegregation of chromosomes.
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Furthermore, the attachment of microtubules to the SPBs
as well as the kinetochores may be controlled by Cdk1,
and Cdk1 also regulates the assembly, positioning and
elongation of the mitotic spindle; improper attachment of
chromosomes to the spindle or aberrant spindle behavior
can lead to CIN [335]. Finally, Cdk1 may be important for
the mitotic checkpoint that monitors spindle assembly
[328], and defects in this checkpoint are well-known to
contribute to CIN [335]. Although Cdk1 has not always
been directly linked to CIN in these processes, it is clear
that its activity must be carefully regulated to prevent
CIN.
Genome instability
In addition to affecting CIN, Cdk1 is involved in a num-
ber of cellular processes that could lead to GIN if not

properly regulated. As we will discuss below, Cdk1 pro-
motes DNA replication but inhibits re-replication, it may
be involved in activation of S phase checkpoints, and it
stimulates DNA repair. Here we will focus on one form of
GIN that we and others have found to be affected by
Cdk1, i.e. GCRs.

The majority of GCRs are thought to stem from prob-
lems during DNA replication [459]. When a DNA repli-
cation fork stalls upon encountering a lesion in the DNA
(e.g. UV-induced cross-linked nucleotides, bulky DNA
adducts, etc.) and the problem is not rectified, the fork is
at risk of collapse, potentially leading to DNA double
strand breaks (DSBs). Stalled replication forks and DSBs
activate the DNA replication checkpoint and the DNA
damage checkpoint. These checkpoints are defined as the

Figure 7 Cdk1 modulates the activity of several DNA damage checkpoint proteins. DNA damage and replication stress are sensed by a number 
of proteins that activate the PIKKs Mec1 and Tel1. These kinases activate a signal transduction pathway consisting of the adaptor proteins Mrc1 and 
Rad9 and the kinases Rad53, Dun1 and Chk1. Cdk1 may phosphorylate Rad9 to boost the signaling cascade. Cdk1 also phosphorylates Rad53, which 
may prevent checkpoint adaptation, but which may also affect processes involved in cell morphogenesis. Together, Mec1, Tel1, Rad53, Dun1 and Chk1 
phosphorylate a number of effector proteins (only a subset of effectors is shown in this figure) that mediate the DNA damage response. Several of 
these effectors are also targeted by Cdk1, although the consequence of simultaneous phosphorylation by Rad53 and Cdk1 is unclear. Mec1/Tel1 and 
Cdk1 directly phosphorylate Sae2 to stimulate its nuclease activity, which is important for resection of DSBs, thereby channeling DSBs into the HR 
pathway. Full resection of DSBs also requires the activity of Dna2 and Sgs1. Phosphorylation of Dna2 by Cdk1 increases its nuclear import, while Cdk1 
may affect Sgs1 by phosphorylating Srs2, which leads to formation of subcomplexes consisting of Srs2, Srs2-Mre11 and Sgs1-Mre11. Mec1/Tel1 and 
Cdk1 also directly phosphorylate Cdc13, resulting in recruitment of telomerase and telomere elongation. See text for details.
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pathways that promote cell cycle delay or arrest in
response to DNA replication stress or DNA damage,
respectively [470]. The central dogma for cell cycle
checkpoints is often presented as: DNA damage signals T
damage sensors T signal transducers T effectors [471].
Exactly how DNA replication stress and DNA damage are
sensed is not clear, but it involves the presence of single-
stranded DNA (ssDNA) and a number of proteins includ-
ing (but not limited to) the ssDNA binding complex RPA;
the Rad24-RFC complex which loads the Ddc1-Rad17-
Mec3 clamp (also referred to as the 9-1-1-complex),
which may also serve as a sensor; the helicase Sgs1; Tof1-
Csm3; and the Mre11-Rad50-Xrs2 (MRX) complex [471]
(Fig. 7). The next step in checkpoint activation is the
recruitment of the phosphoinositide 3 kinase-related
kinases (PIKKs) Mec1 (similar to metazoan ATR) and
Tel1 (similar to ATM). Mec1 is recruited to stalled forks
and DSBs by Ddc2, while Tel1 may be recruited to DSBs
by interacting directly with the MRX complex [472]. Acti-
vation of Mec1 and Tel1 results in recruitment and phos-
phorylation of the adaptor proteins Mrc1 and Rad9,
which in turn recruit and activate the kinases Chk1 and
Rad53 (similar to mammalian Chk2) [473]. Rad53
appears to be the main player, especially in terms of stabi-
lization of replication forks during DNA replication
stress, although Chk1 has functions in stabilizing replica-
tion forks in the absence of Rad53 [474]. Checkpoint acti-
vation in S. pombe and higher eukaryotes results in
inhibition of Cdk1 by stabilizing the phosphatase Cdc25,
thereby shifting the balance from unphosphorylated to
Y19-phosphorylated, inactive Cdk1. Furthermore, higher
eukaryotes also activate p53 to induce the expression of
CKIs such as p21 to further inhibit CDK activity. While
DNA damage in an early stage of the cell cycle may delay
entry into S phase by inhibiting Cdk1 (through Rad53-
mediated phosphorylation and thereby inhibition of the
transcription factor Swi6, preventing expression of CLN1
and CLN2 [475,476], S. cerevisiae cells typically arrest the
cell cycle with high Cdk1 activity, and inhibitory phos-
phorylation of Y19 of Cdk1 is not required for efficient
cell cycle arrest [477,478]. Instead, checkpoint activation
induces cell cycle arrest by directly targeting the pro-
cesses that are required for cell cycle progression; for
example Rad53 inhibits firing of late origins of replication
[479,480] at a stage after pre-RC formation but before
pre-IC formation, and it has been shown to phosphory-
late the Dbf4-Cdc7 kinase complex (DDK, which is
involved in pre-IC formation, see section 'Cdk1 and DNA
replication'), which may inhibit DDK activity and remove
it from chromatin [481-484]. In addition to inhibiting late
origin firing, activation of the checkpoint is thought to
block cell cycle progression by inhibiting chromosome
segregation through Chk1-mediated phosphorylation
and thereby stabilization of Pds1, thus preventing activa-

tion of Esp1 and loss of cohesion [485-490]. Mec1 and
Rad53 further prevent mitotic progression by inhibiting
the APC component Cdc20 [491,492], and Mec1 blocks
spindle elongation by inhibiting the expression of Cin8
and Stu2 [493]. Finally, the checkpoint may enforce cell
cycle arrest by inhibiting Cdc5 to prevent mitotic exit
[489]. Besides checkpoint activation to inhibit cell cycle
progression, the DNA damage response includes upregu-
lation of ribonucleotide reductase to produce more
dNTPs by phosphorylation and degradation of the RNR
inhibitor Sml1 by Dun1 [494-496]; induction of tran-
scriptional programs by Dun1-mediated phosphorylation
and thereby inhibition of the transcriptional repressor
Crt1 [497]; stabilization of DNA replication forks [498]
and replication fork restart [499], recruitment of DNA
repair factors [471,500], coordination of cell morphogen-
esis through timely degradation of Swe1 [81,501], and
inhibition of nuclear migration [502]. The importance of
an intact DNA damage response in maintenance of
genome stability is underscored by the finding that
checkpoint defective mutants have high rates of GCRs
[503-505], and as we will discuss below, Cdk1 modulates
checkpoint activation as well as DNA repair pathways.
Cdk1 in checkpoint activation and DNA repair
Several studies have shown that Cdk1 activity must be
carefully regulated in order to prevent DNA damage. For
example, failure of Cdk1 to prevent re-replication induces
DNA damage [506,507]. Increased Cdk1 activity (either
by deleting SIC1 or by overexpression of a stabilized form
of Cln2), which induces premature entry into S phase,
leads to DSBs and the formation of GCRs [325,468,508],
and overexpression of either CLN1 or CLN2 requires a
functional checkpoint for viability [509]. Conversely,
reduced Cdk1 activity (by depleting the S phase cyclins
Clb5 and Clb6) also triggers a checkpoint response
[510,511], indicating the formation of DNA damage. Fur-
thermore, clnΔ cln2Δ double mutants require functional
Rad27 (the S. cerevisiae version of the flap endonuclease
Fen1 that processes Okazaki fragments; cells lacking
Rad27 have high levels of DSBs and high GCR rates [512])
for viability, as do mutants expressing hypomorphic cdk1
alleles [325,513]. These findings indicate that Cdk1 is
required for the cellular response to DSBs that occur due
to loss of Rad27 activity. Finally, reduced Cdk1 activity
(by loss of expression of Clb5,6 or expression of hypo-
morphic cdk1 alleles) leads to sensitivity to various forms
of DNA damage [325,510,514], providing additional evi-
dence that Cdk1 is involved in the DNA damage
response. Together, these studies show that the activity of
Cdk1 must be tightly regulated, because either too much
or too little Cdk1 activity leads to DNA damage and
genome instability, and these studies also suggest a
potential involvement of Cdk1 in the DNA damage
response. Indeed, Cdk1 has been shown to be required
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for DSB-induced checkpoint activation and for homolo-
gous recombination (HR) [515], and for recruitment of
the HR protein Rad52 to DSBs [516]. S. cerevisiae cells
preferentially repair DSBs through HR during S, G2 and
M phase, when there is a template present to carry out
HR. However, in G1, when there is no template present
for HR, cells repair DSBs by non-homologous end-join-
ing (NHEJ). While this differential cell cycle-dependent
repair of DSBs was initially thought to be passive (i.e.
because there is no template in G1, cells automatically
channel DSBs into the NHEJ pathway), it was recently
discovered that cells actively determine the pathway of
DSB repair, and that this depends on Cdk1 activity [515].
When Cdk1 is inactive (in G1 phase), the default form of
repair is NHEJ, however when Cdk1 is active (S-G2-M)
the cell preferentially uses HR for DSB repair. The effect
of Cdk1 appears to be two-fold; it actively promotes HR
during S-G2-M [515], while simultaneously actively sup-
pressing the recruitment of proteins involved in NHEJ
[517]. While the mechanism of suppression of NHEJ by
Cdk1 is unknown [517], the mechanism by which it stim-
ulates HR is much better defined: it phosphorylates the
nuclease Sae2, which induces it to resect DSBs to expose
ssDNA [518], which is the first step of HR [519,520]. Fur-
thermore, the exposed ssDNA is thought to promote
checkpoint activation [515]. However, it should be noted
that Sae2 only resects a relatively small amount of DNA,
and efficient resection of DSBs requires the additional
activity of Mre11-Rad50-Xrs2 complex, the nucleases
Dna2 and Exo1, and the helicase Sgs1 [521-523]. Further-
more, an sae2Δ deletion mutant is not as sensitive to
DNA damaging agents like MMS as hypomorphic cdk1
mutants, indicating that Cdk1 must have additional tar-
gets in the DNA damage response (our unpublished
results). One such target may be Dna2, which is a very
efficient in vitro substrate for Cdk1 [126], and it was
recently shown that phosphorylation of Dna2 in its NLS
by Cdk1 may target it to the nucleus [118]. Therefore, it is
tempting to speculate that Cdk1 drives a concerted effort
to resect DSBs by activating Sae2 and inducing nuclear
import of Dna2.

It should be noted that although Cdk1 may be required
for HR, we have recently demonstrated a genetic interac-
tion between CDK1 and MRE11 (as well as other compo-
nents of the MRX complex), and we also found that
Mre11 and Cdk1 cooperate to prevent mitotic catastro-
phe after HU-induced DNA replication stress [325].
These results suggest that while Cdk1 may promote HR
by stimulating Sae2, it is likely to have an additional func-
tion in a pathway parallel to HR, although the nature of
this pathway is currently unknown.

In addition to phosphorylating Sae2, Cdk1 also targets
the helicase Srs2 [524,525]. Srs2 is complexed to Mre11
and Sgs1 during unperturbed conditions, but treatment

of cells with MMS leads to formation of Srs2-Mre11, Srs2
and Sgs1-Mre11 subcomplexes [525]. Although the phys-
iological relevance of formation of these subcomplexes is
not well defined, it depends on Srs2 phosphorylation by
Cdk1, and mutation of these phosphorylation sites results
in sensitivity to the DNA alkylating agent MMS [525]. In
a more recent study, detailed analysis of Cdk1-mediated
phosphorylation of Srs2 revealed that it inhibits Srs2
sumoylation while promoting the helicase function of
Srs2 during HR [526]. How this relates to the MMS-
induced formation of the Srs2-Mre11, Srs2 and Sgs1-
Mre11 subcomplexes remains unknown.

Cdk1 has been reported to be required for checkpoint
activation [515]. However, there are conflicting reports
regarding the involvement of Cdk1 in checkpoint activa-
tion. One study showed that ionizing radiation and HO-
induced DSBs require Cdk1 activity for full activation of
Rad53 in G2/M phase-arrested cells while these treat-
ments did not activate Rad53 in G1 phase [515], and acti-
vation of Rad53 by MMS treatment did not require Cdk1
during G2/M [515]. In support of this study, artificial
activation of Rad53 by colocalization of upstream check-
point sensors (but in absence of DNA damage) requires
Cdk1-dependent phosphorylation of Rad9 in G2/M-
phase arrested cells [527]. In contrast, other studies found
that inhibition of Cdk1 does not block HU-induced acti-
vation of Rad53 [325,524]. One explanation for this
apparent discrepancy might be a differential response of
cells to various DNA damaging agents, i.e. DSBs induced
by ionizing radiation or by HO breaks require Cdk1,
while HU-induced DNA replication stress does not.
Alternatively, cells may respond differentially to DSBs
during different stages of the cell cycle, since DSBs that
occur during G2/M phase lead to a moderate activation
of the checkpoint, while DSBs that occur during S phase
lead to much stronger checkpoint activation due to repli-
cation fork stalling [528]. Therefore, checkpoint activa-
tion by stalled replication forks may either not require
Cdk1 activity, or the checkpoint response is so strong that
it overrides the requirement for Cdk1. A third explana-
tion might be redundancy in checkpoint activation,
because it was recently shown that Cdk1 by itself is not
sufficient to activate the checkpoint during S phase, but it
also requires the activity of the Ddc1-Rad17-Mec3 com-
plex [529].

Interestingly, Cdk1 was recently shown to directly
phosphorylate Rad53 on S774 [530,531]. Phosphorylation
of Rad53 by Cdk1 does not appear to have consequences
for checkpoint activation [530,531], but may rather pre-
vent checkpoint adaptation [530]; checkpoint adaptation
is defined as the process in which a cell resumes the cell
cycle even though DNA damage is still present [532].
Another study also did not find a function for Cdk1-
mediated phosphorylation of Rad53-S774 in checkpoint
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activation [531]. Instead, it was shown that this phospho-
rylation may be important for Rad53's function in regu-
lating cell morphogenesis [531], which we previously
found to promote cell viability during DNA replication
stress [81]. More detailed studies should clarify the exact
functions of Cdk1 in the DNA damage response during
the various stages of the cell cycle and upon different
forms of DNA damage.

In addition to mediating HR-dependent DNA repair
and modulating the DNA damage checkpoint, Cdk1 also
controls at least three aspects of telomere homeostasis: (i)
cell cycle-dependent telomere elongation, (ii) resection
and degradation of telomeres in mutants lacking full
telomerase activity, and (iii) HR-dependent telomere
extension in post-senescent survivors that arise in telom-
erase-deficient cells.

Telomeres protect the chromosomes against degrada-
tion by DNA repair enzymes and checkpoint proteins
that otherwise might recognize the chromosome ends as
DNA double-strand breaks [533,534]. Telomeres are
elongated by replication by telomerase, a ribonucleopro-
tein enzyme that synthesizes DNA by using its own RNA
moiety as a template, thus overcoming the end-replica-
tion problem (i.e. loss of sequence and chromosome deg-
radation as cells divide) [535,536]. Telomere protection
and telomerase recruitment are mediated by Cdc13, a
ssDNA binding protein that directly interacts with telom-
erase (Est1) [537-540]. Telomere elongation is cell cycle
dependent, and recently it was shown that Cdk1-medi-
ated phosphorylation of Cdc13 promotes its interaction
with Est1, leading to telomere elongation [541,542]. In
contrast, when Cdc13 is depleted from cells by growing
temperature-sensitive cdc13-1 mutants at restrictive tem-
perature, the telomeres are resected in manner depen-
dent on Cdk1, resembling Cdk1-dependent resection of a
DSB [515,543]. Therefore, the Cdk1-dependent resection
of dysfunctional telomeres that form due to absence of
Cdc13 may be an attempt to repair chromosome ends
that are now recognized as DSBs. Furthermore, in telom-
erase-deficient mutants (which senesce due to erosion of
telomeres), rare post-senescent survivors arise that utilize
HR to elongate telomeres in a telomerase-independent
fashion. Interestingly, Clb2-Cdk1 has been found to be
required for formation of such HR-dependent post-
senescent survivors [544,545], again resembling the
Cdk1-dependent processing of a DSB by the HR pathway.
However, it is currently unknown which enzyme is tar-
geted by Cdk1 to induce resection of the chromosome
ends, and although it is tempting to speculate that it
might be Sae2, SAE2 has not been identified in screens
for genes that affect telomere length [546,547], and in
addition Ctp1 (a diverged ortholog of Sae2 in S. pombe
[548]) does not appear to have a role in telomere homeo-
stasis [548]. One last target of Cdk1 is worth mentioning

in respect to processing of DSBs: Mer2, a Spo11 ancillary
protein required for DSB formation during meiosis. Clb5-
Cdk1 was already known to be required for formation of
DSBs during meiosis [549], but recently Clb5-Cdk1 was
shown to directly phosphorylate Mer2 on S30 and S271
during meiosis [550]. Phosphorylation of S30 may serves
as a priming site for phosphorylation by DDK on S29
[551,552], and collectively these phosphorylations may
promote the loading of Spo11 on meiotic recombination
hotspots, possibly by interaction with Mei4, Rec114 and
Xrs2 [550]. Therefore, Cdk1 is involved in processing of
DSBs during the mitotic phase of the cell cycle as well as
in formation and processing of DSBs during meiosis.

There exists overlap between targets of Cdk1 and the
kinases that mediate the DNA damage response (see Fig.
7) (for recent reviews on targets of checkpoint kinases see
[321,471,553]). For instance, Sae2 is phosphorylated by
Mec1/Tel1 [554] and Cdk1 [518], and mutating either its
Mec1/Tel1 sites or its Cdk1 phosphorylation site results
in increased sensitivity to DNA damage, indicating a con-
certed response of checkpoint kinases and Cdk1 to DNA
damage. Another example is Cdc13, which is phosphory-
lated on several sites by Mec1 and Tel1 as well as by Cdk1
to promote recruitment of telomerase in order to main-
tain telomere length [555]. Other proteins that are tar-
geted both by Cdk1 and checkpoint kinases are Swi6,
Cdc5, Cdc20 and Pds1. It is currently unclear why overlap
between targets exists, and it remains unknown to what
extent the combined checkpoint-mediated and the Cdk1-
mediated phosphorylations affect the function of the pro-
tein to determine the final output of the DNA damage
response. Presumably, the fact that Cdk1 and the check-
point kinases converge on an overlapping set of targets
helps coordinate the DNA damage response with the cell
cycle.

An important function of the DNA damage response
and DNA repair pathways is to suppress genome instabil-
ity. One form of genome instability, GCRs, is suppressed
by many checkpoint and DNA repair proteins [459,556].
Most GCRs are thought to arise from problems during
DNA replication, which might be the result of lesions and
replication blocks that are improperly processed. For
instance, reactive oxygen species (ROS) can cause serious
problems during DNA replication resulting in genome
instability because they can induce many types of DNA
damage, including single- and double-stranded DNA
breaks, base and sugar modifications, and DNA-protein
crosslinks [557,558], and mechanisms that protect the
cell against the deleterious effects of ROS cooperate with
various DNA repair pathways such as HR to suppress
GCRs [559]. Another cause of GCRs is DNA replication
itself, especially in mutants in which the fidelity of DNA
replication is reduced [512,560], and GCRs also arise in
mutants that are defective in assembly of newly replicated
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DNA into chromatin [561]. Furthermore, the activity of
the S-phase checkpoint and various DNA repair path-
ways are essential for suppression of GCRs [503-505], as
is proper regulation of the processes that control telom-
ere formation and maintenance [562,563]. Finally, we and
others have shown that Cdk1 is involved in formation of
GCRs [325,468,508].

As discussed in previous sections, Cdk1 plays multiple
roles in DNA replication; low Cdk1 activity in G1 pro-
motes pre-RC formation, while Cdk1 activity during S
phase results in origin firing and prevents re-replication.
It is therefore not surprising that increased Cdk1 activity
(due to depletion of Sic1 or Far1, or by overexpression of
a stabilized form of Cln2) leads to increased GCR rates
[325,468,508]. Presumably, this is due to premature entry
into S phase, when either not enough pre-RCs have been
assembled or pre-RC assembly is still incomplete [468],
and consistent with this the addition of multiple origins
can suppress the increased GCR rate of cells overexpress-
ing Cln2 [508]. What is more surprising, however, is the
finding that Cdk1 activity is not just necessary but in fact
also required for formation of GCRs [325]. Reduced Cdk1
activity (by expression of hypomorphic cdk1 alleles) is
able to suppress the very high GCR rates that are
observed in mutants lacking proteins involved in DSB
repair, such as Mre11, but also the flap endonuclease
Rad27, the helicase Pif1 (which suppresses de novo
telomere additions), and S phase checkpoints [325]. In
contrast, hypomorphic cdk1 alleles do not suppress
small-scale mutations that arise in msh2Δ mismatch
repair mutants. This indicates that Cdk1 specifically pre-
vents formation of rearrangement-prone forms of DNA
damage, such as single-strand and double-stranded DNA
breaks, or alternatively it processes these forms of dam-
age once they have occurred. Exactly how Cdk1 is
required for formation of GCRs is currently unknown,
although it cannot be explained by simply a reduced
speed of cell cycle progression (due to reduced Cdk1
activity), which could give cells more time to faithfully
repair DNA damage to evade formation of a GCR [325].
Furthermore, the requirement for Cdk1 in formation of
GCRs is not mediated by the Sae2-HR pathway, because
deletion of Sae2 increases rather than suppresses GCRs
[325]. It is more likely that Cdk1 promotes GCR-prone
repair of damaged chromosomes, and that in absence of
Cdk1 activity repair does not take place, resulting in loss
of the broken chromosome and subsequent inviability
due to loss of essential genetic information, leading to an
apparent reduction in GCR rates. What then might be the
mechanism for Cdk1 in formation of GCRs? One clue
comes from a set of genes that, like CDK1, have been
found to be required for formation of GCRs, and deletion
of these genes also results in suppression of GCRs, simi-
lar to hypomorphic cdk1 alleles [564]. These genes,

BUB1, BUB2, BUB3, MAD2 and MAD3, are involved in
the mitotic spindle checkpoint and mitotic exit. As dis-
cussed in previous sections, Cdk1 may be involved in
these processes, and one could speculate that the require-
ment for Cdk1 in formation of GCRs involves these gene
products. Interestingly, we found genetic interactions
between CDK1 and genes involved in these processes,
suggesting they share common functions [325]. It is cur-
rently unknown how these genes are required for forma-
tion of GCRs, but it is of interest to note that treating cells
with a low dose of nocodazole (which severely slowed the
cell cycle due to activation of the mitotic spindle check-
point), resulted in increased GCR rates [325], again sug-
gesting that an intact mitotic spindle checkpoint is
somehow required for formation of GCRs. One explana-
tion for this observation could be that the activity of the
mitotic spindle checkpoint ensures that cells spend a little
more time in M phase, at least long enough for GCR-
prone healing of any broken chromosomes to occur; in
absence of the mitotic checkpoint M phase lasts shorter
and cells with any broken chromosomes might now exit
from mitosis before chromosome healing has taken place,
which subsequently results in chromosome loss and invi-
ability, leading to an apparent reduction in GCR rates.
Whether Cdk1 indeed exerts its effect on formation of
GCRs through its spindle assembly function remains to
be determined.

In conclusion, Cdk1 affects many aspects of CIN and
GIN. It has positive effects on genome stability by pre-
venting mitotic catastrophe, however it negatively affects
genome stability by promoting formation of GCRs. Cdk1
activity needs to be carefully regulated, because either too
much or too little Cdk1 activity can affect genome integ-
rity.

Future directions and ramifications for cancer treatment
Many aspects of the cell cycle are directly controlled by
Cdk1, and include regulation of cell polarity and mor-
phology, DNA replication, chromosome segregation, and
maintenance of genome stability. Many, if not all, facets of
Cdk1 regulation involve positive and negative feedback
loops, reflecting the need for tight control of the cell
cycle. This is especially evident in regulation of processes
that affect genome stability, because both an aberrant
increase as well as a decrease in Cdk1 activity can lead to
genome instability, with potentially disastrous conse-
quences for the organism. While regulation of Cdk1
activity is relatively well understood, comparatively little
is known about its downstream targets. As discussed in
this review, approximately 75 Cdk1 targets have been
described in S. cerevisiae (See additional Table 1), but
regarding the enormous complexity of cell duplication,
we expect many more to be identified. While the use of
classic yeast genetics has been useful in the discovery of
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upstream regulators of Cdk1, such as cyclins and Cak1,
downstream components are rarely identified in suppres-
sor screens, probably because Cdk1 activity is required
for several essential cellular processes throughout the cell
cycle, and no single Cdk1 target can compensate for loss
of Cdk1 activity during all these different steps. More
advanced genetic screens may be required to unravel the
complete genetic network of the cell cycle that involve
CDK1, like e.g. synthetic genetic array (SGA) and syn-
thetic dosage lethality (SDL) screens, which have been
successful in identification of novel processes and targets
controlled by the related CDK Pho85 [191,565-568]. Fur-
thermore, in a recent study, which combined specific
chemical inhibition of Cdk1 with quantitative mass spec-
trometry, 308 potential Cdk1 substrates were identified
[17], many of which had previously been shown to be
bona fide Cdk1 targets. The functional consequences of
phosphorylation of the vast majority of these potential
Cdk1 substrates still needs to be determined.

Complexity to Cdk1 signaling is added by the fact that
multiple enzymes can recognize Cdk1 phosphorylation
sites to further modify those proteins; e.g. the proline
isomerase Ess1/Pin1 can be recruited to phosphorylated
SP/TP sites (potentially phosphorylated by Cdk1) to
isomerize the proline residue, and this has been shown to
affect diverse cellular processes, including growth factor-
induced signal transduction pathways, cell-cycle progres-
sion, cellular stress responses, neuronal function and
immune responses [569]. Additionally, phosphorylation
by Cdk1 can serve as a priming site for further phospho-
rylation by other kinases, such as the polo kinase Cdc5
[135]. Furthermore, there exists extensive cross-talk
between Cdk1 and Pho85 [8]. Potential cross-talk
between Cdk1 and the other CDKs (Ssn3, Kin28, Bur1
and Ctk1) remains largely unexplored, although cross-
talk might be expected based on the fact that Cdk1 and
the other CDKs all control various facets of transcription.
Other aspects of Cdk1 signaling have remained obscure,
e.g. Cdk1 has a kinase-independent role in regulation of
transcription, but little more is known about this process
than recruitment of the proteasome [168], and it is not
known whether Cdk1 (or its scantily studied interaction
partner Cks1) has adaptor functions in other processes as
well.

Because considerable attention has been focused on the
function of Cdk1 in duplication of the genome (DNA rep-
lication, repair and chromosome segregation), the
involvement of Cdk1 in other processes associated with
the cell cycle is not as well studied, like for instance cell
metabolism. When the cell enters the cell cycle, enor-
mous changes take place in catabolic and anabolic pro-
cesses to facilitate duplication of the genome and
biosynthesis of cellular structures and organelles, and
therefore one might expect Cdk1 to have a direct role in

controlling enzymes required for biosynthesis. However,
apart from a few Cdk1 targets, such as Tgl4 and Smp2,
which are involved in fatty acid synthesis, and the tran-
scription factor Pho2, which stimulates the expression of
genes involved in purine and histidine biosynthesis path-
ways, little is known about the role of Cdk1 in cell metab-
olism. It seems likely that additional targets of Cdk1 exist
that control metabolic pathways.

Finally, an important aspect of CDKs is their involve-
ment in tumor growth. Like in S. cerevisiae, a single CDK
(Cdk1, also known as Cdc2) is sufficient to drive the cell
cycle in higher eukaryotes, but additional CDKs
(Cdk2,4,6) are required for proliferation of specialized
tissues and development of the organism [28,570,571].
While CDKs are crucial for growth and development of
all eukaryotes, the aberrant activity of these CDKs is well
known to underlie tumor growth [28]. Numerous studies
have shown that tumor cells evade antigrowth signals.
One key inhibitor of the cell cycle is p53, which blocks the
cell cycle by inhibiting CDK activity in several ways, one
of which is inducing the transcription of p21 [572,573],
which binds and inactivates cyclin-CDK complexes. Both
p53 and p21 are frequently mutated in human cancers
[574], as well as other CKIs such as p16 and p27 [28], and
most human tumors aberrantly express cyclin D and
cyclin E [28], underscoring the importance of proper con-
trol of CDK activity. It is becoming clear that CDKs play
an important role in the DNA damage response in S. cere-
visiae as well as mammalian cells, and treatment of cells
with DNA damaging agents while simultaneously inhibit-
ing Cdk1 activity results in extreme cell toxicity in S. cere-
visiae and human cells [325,515,518,575,576]. Currently,
several combination therapies are in clinical trial as can-
cer chemotherapy [577]. The vast majority of current
chemotherapies are based on drugs that induce DNA
damage or that inhibit mitosis by targeting microtubules,
and these therapies frequently result in serious side
effects such as mucositis and myelosuppression, and
increase the risk of secondary neoplasms. We believe that
unraveling the genetic network of CDK1 (i.e. the network
of genes that become essential under conditions of
reduced Cdk1 activity) might identify novel pathways
that can be targeted by combination therapy with CDK
inhibitors to induce synthetic lethality of cancer cells,
thus contributing to more personalized, less toxic and
more efficacious chemotherapy.

Conclusions
In conclusion, the identification of Cdk1 targets during
the past decade has greatly improved our understanding
of the molecular mechanism of the cell cycle. Nonethe-
less, much work still needs to be done because many tar-
gets remain to be identified, the exact phosphorylation
sites of many known Cdk1 targets have not been mapped
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and the consequences of these phosphorylations at the
molecular often remain elusive. The development of
modern genetic screens [567,578] and tools to specifically
target Cdk1 activity [579], and the identification of a large
collection of potential Cdk1 targets [17,126,580] will cat-
alyze the identification of novel processes and targets
controlled by Cdk1. This, and the unraveling of the
genetic network of the cell cycle may aid in development
of more efficacious cancer chemotherapy.
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