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Distinct and redundant functions of cyclin E1 and
cyclin E2 in development and cancer
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Abstract

The highly conserved E-type cyclins are core components of the cell cycle machinery, facilitating the transition into
S phase through activation of the cyclin dependent kinases, and assembly of pre-replication complexes on DNA.
Cyclin E1 and cyclin E2 are assumed to be functionally redundant, as cyclin E1-/- E2-/- mice are embryonic lethal
while cyclin E1-/- and E2-/- single knockout mice have primarily normal phenotypes. However more detailed studies
of the functions and regulation of the E-cyclins have unveiled potential additional roles for these proteins, such as
in endoreplication and meiosis, which are more closely associated with either cyclin E1 or cyclin E2. Moreover,
expression of each E-cyclin can be independently regulated by distinct transcription factors and microRNAs, allow-
ing for context-specific expression. Furthermore, cyclins E1 and E2 are frequently expressed independently of one
another in human cancer, with unique associations to signatures of poor prognosis. These data imply an absence
of co-regulation of cyclins E1 and E2 during tumorigenesis and possibly different contributions to cancer progres-
sion. This is supported by in vitro data identifying divergent regulation of the two genes, as well as potentially dif-
ferent roles in vivo.

Introduction
Cyclin E1, the prototypic E-cyclin, was first described in
1991 [1], and has since been found to have crucial roles
in cell proliferation and oncogenesis [2,3]. The second
mammalian E-cyclin, cyclin E2, was identified in 1998
[4,5], and is largely regarded as being functionally
redundant with cyclin E1 [2,3,6]. Cyclin E1 and cyclin
E2 are encoded by different genes: cyclin E1 by CCNE1
at 19q12, and cyclin E2 by CCNE2 at 8q22.1. The cyclin
E1 and cyclin E2 proteins display high sequence similar-
ity (69.3% in Homo sapiens), and important functional
motifs are conserved. These include domains for Cdk
(cyclin dependent kinase) and Cdk inhibitor interaction,
a nuclear localisation sequence and a centrosome locali-
sation sequence (Figure 1). This high sequence conser-
vation has supported a hypothesis of complete
redundancy between the two proteins.
More recent data have identified instances of specific

regulation or function for each E-cyclin. First, animal
models hint that we have not fully delineated the roles
of the E-cyclins, and cyclin E2-/- mice display subtle
phenotypes that may indicate key functional differences

to cyclin E1. A second difference is that cyclins E1 and
E2 can be regulated by distinct transcription factors and
miRNAs. Finally, the expression of cyclin E1 and E2 is
not always linked in cancer, and this discordance con-
firms that there are likely to be underlying functional
and regulatory differences between the two proteins.

Known functions of the E-cyclins
The E-type cyclins activate the kinase Cdk2 that phos-
phorylates substrates including the retinoblastoma pro-
tein (Rb). Rb phosphorylation leads to the release of E2F
transcription factors and initiation of S phase and DNA
synthesis, by induction of expression of S phase proteins
including histone proteins and cyclin A. Cyclin E-Cdk2
also directly phosphorylates proteins involved in centro-
some duplication (NPM, CP110, Mps1), DNA synthesis
(Cdt1), DNA repair (Brca1, Ku70), histone gene tran-
scription (p220/NPAT, CBP/p300, HIRA) and Cdk inhi-
bitors p21Waf1/Cip1 or p27Kip1 (reviewed in [2,3,7]). The
specificity of cyclin-Cdk activity towards particular sub-
strates is predominantly mediated via differences in
cyclin sequence and periodic expression of cyclins dur-
ing cell cycle phases, along with specific sub-cellular
localisation [8,9]. Given that cyclins E1 and E2 are very
similar in sequence and are both nuclear proteins [5,10],
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it seems probable that cyclin E1-Cdk2 and cyclin E2-
Cdk2 phosphorylate a very similar subset of proteins so
long as they exhibit the same periodicity of expression.
There is considerable overlap even between cyclin E1-
Cdk2 and cyclin A-Cdk2 targets [8]. Cyclin E1 can also
activate Cdc2/Cdk1. In Cdc2 knockout mice, cyclin E1-
Cdc2 kinase activity compensates for the absence of
cyclin E1-Cdc2 activity to promote S phase entry [11].
Cyclin E1 also interacts with Cdc2 in the presence of
Cdk2, which possibly contributes to S-phase entry in

mitotic cell cycles [11]. Both E-cyclins can also complex
with Cdk3, although it is not known if this interaction is
significant in vivo [5,12].
While a predominant function of the E-cyclins is to

activate Cdk2, it has become apparent that there are
crucial Cdk-independent roles (Figure 2). Cdk2-/- mice
are viable whereas cyclin E1-/- E2-/- mice are embryonic
lethal [13], implying an essential Cdk-independent func-
tion for the E-cyclins. Furthermore, truncated variants
of cyclin E1 that cannot bind Cdk2 are able to induce

Figure 1 Cyclin E1 and cyclin E2 are similar proteins, but are independently conserved in vertebrate organisms. A. Homo sapiens cyclin
E1 and cyclin E2 proteins were aligned and percentage similarity calculated using ALIGN [127]. The sequences have 48.6% identity overall, with
higher identity within the well-conserved cyclin box (75.0%), and less conservation in the N-terminal (45.6%) and C-terminal regions (29.6%). NLS
= nuclear localisation sequence, CLS = centrosome localisation sequence, P = phosphorylation site. B. Cyclin E from invertebrates was compared
to cyclin E1 and cyclin E2 from several vertebrate organisms. The sequences were aligned using CLUSTALW and the GONNET matrix [128], and a
phenogram derived of the alignment using the DRAWTREE application of the PHYLIP package [129]. The phenogram was visualised with the
application TREEVIEW [130]. The scale bar indicates 0.1 amino acid changes per character.
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malignant transformation [12], and oncogenesis has
been associated with increased cyclin E1 in the absence
of increased Cdk2 activity [12,14-16]. Subsequent to
these studies, additional major roles for cyclin E1 have
been established in the formation of pre-replication
complexes on DNA, endocycling and centrosome dupli-
cation (Figure 2).
In order for DNA synthesis to occur after the transi-

tion from quiescence (G0) into the cell cycle, it is neces-
sary for the DNA replication complexes to be assembled
de novo at the origins of replication. These pre-initiation
replication complexes (pre-RC) consist of the pre-licen-
sing factors Cdt1 and Cdc6 that associate with the ori-
gin-binding protein ORC, and the DNA replicative
helicase components, MCM 2-7 [17]. Cyclin E1, inde-
pendent of Cdk2 activity, associates with DNA near
replication origins, and facilitates MCM loading at ori-
gins through direct interactions with MCM proteins and
Cdt1 [18]. This process may also be important in endor-
eplication, where DNA is replicated without cell divi-
sion. Endoreplication results in polyploid cells that have
essential functions in development, cell differentiation

and as an energy reserve [19]. E-cyclins are crucial for
endocycling, with the absence of E-cyclins leading to
reduced DNA copy number and mortality due to fail-
ures in the polyploid giant trophoblast cells of the pla-
centa [13,20]. Like diploid cells, endocycling cells
require pre-RC assembly at origins of replication. While
the precise function of the E-cyclins in endocycling is
not established, in Drosophila cyclin E recruits MCM2
to the DNA during early endocycles of polytene cells of
the salivary gland [21], implying that E-cyclins also func-
tion in pre-RC formation in these cells.
A 20 amino acid centrosome localisation sequence

(CLS) in cyclin E1 targets this protein to the centrosome
[22]. Cyclin E1 overexpression increases the proportion
of cells in S phase by a mechanism that is dependent
upon this region, but independent of Cdk2-binding [22].
The increase in the proportion of S phase cells may
reflect a lengthening of S phase, rather than an increase
in proliferation per se [23]. In fact, the cyclin E1 CLS is
responsible for co-localising MCM5 to the centrosome,
where its presence inhibits centrosome over-duplication
and proliferation [24]. Consequently the CLS may

Figure 2 Cyclin E has multiple functions in cell cycle progression, both Cdk-dependent and Cdk-independent. Cyclin E is necessary for
the formation of pre-replication complexes on DNA as cells re-enter the cell cycle after quiescence. Cyclin E also activates the Cdk2 holoenzyme,
and phosphorylates many targets at the G1 to S phase transition of the cell cycle, including the retinoblastoma protein (Rb). Finally, cyclin E, via
its CLS binding motif, interacts with centrosomes and promotes centrosome duplication.

Caldon and Musgrove Cell Division 2010, 5:2
http://www.celldiv.com/content/5/1/2

Page 3 of 13



function as a coordinating link between centrosome
duplication and pre-RC formation [24]. Cdk2 activity is
also synchronised with these events, as cyclin E1-Cdk2
phosphorylates nucleophosmin, CP110 and Mps1, pro-
moting centrosome duplication [2,3,7].
The non-Cdk functions of the E-cyclins have been

investigated using cyclin E1, and have been presumed to
be identical for cyclin E2 [18,22]. The CLS motif is well
conserved between cyclin E1 and cyclin E2, implying
that cyclin E2 would be functionally active at the centro-
some [18,22]. Cyclin E1-/- E2-/- mice are embryonic
lethal whereas the individual knockout mice have largely
normal phenotypes, which supports an assumption that
either cyclin E1 or E2 can fulfil all of the functions of
the E-cyclins. Despite this apparent redundancy, a care-
ful consideration of animal models leads us to question
whether cyclin E1 and cyclin E2 are true homologs.

E-cyclins in animal models
Non-canonical functions of “Cyclin E” in developmental
models
Both E-cyclins are expressed in vertebrates, whereas
invertebrates such as Drosophila melanogaster and Cae-
norhabditis elegans each have only one “cyclin E”, which
is essential for viability [25,26]. Cyclin E1, but not cyclin
E2, is maternally expressed in Xenopus laevis embryo-
genesis, such that cyclin E1 is the only E-type cyclin
during early embryonic cell cycles. The presence of a
single E-cyclin has allowed for sophisticated studies of
E-cyclins in these organisms that are not confounded by
functional compensation between the E-cyclins. Conse-
quently some of the major roles of E-cyclins, including
activation of Cdk2 during the G1 to S phase transition
[26], endoreplication [27], and formation of pre-RCs
[21,28], were identified very early in these models.
Studies in these organisms have also hinted that E-

type cyclins may have roles in addition to those
described in pre-RC formation, Cdk activation and cen-
trosome biology. In embryonic cell cycles that lack G1

and G2 phases, E-cyclins are expressed throughout the
cell cycle and particularly during S phase [29], and this
is associated with high Cdk2 activity [30], and normal
progression through S phase. By contrast, in the somatic
cell cycles of mammalian cells, the expression of the E-
cyclins is confined to a window between late G1 and
early S phase [4,5,10], and the degradation of cyclin E1
during S phase is a pre-requisite for mitosis and entry
into the next cell cycle [23,31]. Cyclin E1-Cdk2 activity
is particularly high on the mitotic chromosomes of cells
in early Xenopus embryos, which suggests that cyclin E
may be promoting pre-RC assembly directly after mito-
sis [32]. An alternative explanation is that cyclin E may
facilitate DNA replication fork movement in certain cir-
cumstances. A Drosophila mutant has been identified in

which a mutation in the cyclin E gene increases replica-
tion fork movement in polytene chromosomes [33].
Cyclin E1 accumulates on chromatin during S phase in
Xenopus extracts [28], potentially with a role in Cdk2-
mediated chromatin decondensation for replication fork
movement [34].
Sustained expression of cyclin E appears to be asso-

ciated with mitosis rather than meiosis of embryonic
cells. Cyclin E expression is translationally repressed
during prophase of C. elegans gonadal cells [35]. The
maintenance of cyclin E expression in these cells actively
promotes mitotic division and embryonic gene expres-
sion rather than meiosis, and leads to the development
of teratomas [35]. A possible explanation for this pheno-
type is that high cyclin E leads to precocious centro-
some assembly, causing exit from meiosis [35].
Cyclin E is also essential in cell fate determination

during Drosophila neurogenesis, where its expression
drives the asymmetric division of neuroblasts into two
lineages of glial and neuronal cells [36]. In the absence
of cyclin E expression, neuroblasts only produce glial
cells rather than the neuronal precursor [36]. This func-
tion does not require the interaction of cyclin E with
Cdk2, and is mediated via binding and inhibiting the
homeobox transcription factor, Prospero [37]. Likewise,
in C. elegans, cyclin E functions in maintaining stem cell
capacity by suppressing the terminal differentiation of
quiescent cells, although in combination with Cdk2 [38].
Cyclins E1 and E2 have distinct roles in Xenopus

development, where cyclin E2, but not cyclin E1, is
necessary for viability [39]. This may reflect a dose
requirement for E-type cyclins, as their expression in
the developing zygote is sequential, with cyclin E1 being
maternally expressed from fertilisation to blastula stage,
and cyclin E2 expressed at high levels from blastula to
tadpole. However, cyclin E1 knockdown at fertilisation
does not affect development [39,40] while cyclin E2
knockdown shows a dose dependent effect on viability
[39]. Incidentally, the cell cycles prior to the mid blas-
tula transition in Xenopus are rapid embryonic cycles
where S and M alternate without variation in cyclin E1
levels, whereas the subsequent cycles, with high cyclin
E2 expression, have incorporated G1 and G2 phases [41].

Knockout mouse models of cyclins E1 and E2
The Drosophila and C. elegans cyclin E is phylogeneti-
cally equidistant to cyclin E1 and cyclin E2 (Figure 1B)
and consequently neither cyclin E1 nor cyclin E2 is
likely to be the functionally equivalent ortholog to
“cyclin E”. It has not been established whether cyclin E1
or cyclin E2 are involved in early embryonic cell divi-
sions or asymmetric differentiation in mammals as
described above for Drosophila, C. elegans and Xenopus.
Mouse embryonic stem cells proliferate in the absence
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of cyclin E1 or E2 [13,20], so perhaps an E-cyclin is
required for the post-embryonic cell cycles, but cyclin A
can substitute effectively in embryonic cell cycles which
lack p21Waf1/Cip1 and p27Kip1 [20]. These questions can
be most effectively addressed by performing cyclin E1
knockin to the cyclin E2 locus, and vice versa.
The phenotype of single knockout mice has yielded

clues about E-cyclin function in endoreplication and
meiosis (Table 1). Double knockout cyclin E1-/- E2-/-

mice die in utero due to impairments in endoreplication
of the trophoblast giant cells (TSCs) that form the pla-
centa, and perform a crucial role in placental attach-
ment and provision of nutrients to the developing
embryo. TSCs normally undergo multiple rounds of
DNA replication without mitosis that increase their
DNA content to 1000N. TSCs of cyclin E1-/- E2-/- mice
barely reach a ploidy of 8N, even with prolonged cul-
ture, although they still increase in size and express
markers of differentiation consistent with TSC develop-
ment [20]. Conversely, in Fbw7 knockout mice, which
fail to degrade cyclin E1, high cyclin E1 expression is
associated with increased DNA synthesis in TSC cells
[42]. Another polyploid cell type, the megakaryocyte,
similarly fails to reduplicate DNA in cyclin E1-/- E2-/-

knockout mice [13]. In the initial studies of this phe-
nomenon no abnormal phenotype of polyploid tissues
was detected in single E-cyclin knockout mice [13,20].
However, the E-cyclins are differentially regulated dur-
ing TSC endoreplication, with cyclin E1 levels declining
while cyclin E2 levels remain steady [20]. Cyclin E2
mRNA is also more highly expressed in the polyploid
cells of the liver, hepatocytes, where it is found at higher
levels in hepatocytes with 8N DNA content than those
with 4N DNA content [43]. Together these data suggest
that cyclin E1 and cyclin E2 levels may have different
roles in endoreplication.
A recent study by Nevzorova et al using partial

hepatectomy of cyclin E1-/- and cyclin E2-/- knockout
mice has shed further light on this subject [44]. Partial
hepatectomy of mice leads to a rapid expansion of the
polyploid hepatocyte population to regenerate the liver.
In cyclin E1-/- mice, this regenerative response was
slightly delayed, and associated with a compensatory
increase in cyclin A-Cdk2 activity [44]. Surprisingly,
cyclin E2-/- mice had accelerated liver regeneration and
increased DNA synthesis associated with an upregula-
tion of cyclin E1 expression and cyclin E1-Cdk2 activ-
ity [44]. Consequently it appears that cyclin E2
normally acts to repress cyclin E1 expression, thus
negatively regulating S phase entry in hepatocytes. The
ablation of cyclin E2 leads to increased polyploidy,
associated with increased cyclin E1-Cdk2 activity [44].
Thus high cyclin E1 may induce endoreplication,
whereas cyclin E2 acts as a brake in this process.

These results are distinct from those observed in the
other polyploid cell types, TSCs and megakaryocytes,
where cyclin E1 and E2 single knockout mice were
reported to have “normal” phenotypes. However the
morphology and Cdk activity of these tissues has not
been explicitly reported in single knockout mice
[13,20], so it may be that similar substitutions are
occurring in these tissues, where cyclin A is functional
in the absence of cyclin E1, and cyclin E1 levels are
increased in the absence of cyclin E2.
A further unique phenotype of the cyclin E2 knockout

mice is testicular atrophy and reduced male fertility,
associated with aberrant meiosis [13]. Could this pheno-
type be due to low cyclin E2 expression increasing
cyclin E1 levels as described for the regenerating liver?
This seems unlikely, as cyclin E1 is already expressed at
high levels in the mouse and human testes [5,45], but
only cyclin E2 deletion results in a phenotype [13,20]. In
addition, cyclin E1+/- E2-/- mice display more pro-
nounced testicular hypoplasia and male infertility than
cyclin E2-/- mice, indicating that it is unlikely that excess
cyclin E1 causes this phenotype, as the phenotype is
more severe when a cyclin E1 allele is removed [13].
Meiosis in C. elegans specifically requires periodic cyclin
E expression [35], so there may be a particular role for
cyclin E2 in the meiosis-mitosis switch in mammals.
The overexpression of a hyperstable form of cyclin E1
that is not periodically degraded does not lead to altered
fertility in mice [46], but this has not been examined in
the context of cyclin E2. Of interest, cyclin E2, but not
cyclin E1, is upregulated by the p110 isoform of the
transcription factor CDP/Cux [47] and CDP/Cux knock-
out mice also suffer from male infertility, although with-
out testicular atrophy [48].

Transcriptional Regulation of the E-cyclins
The E-cyclins are cell cycle regulated at both the
mRNA and protein level, leading to cell cycle phase-
specific expression. Cyclin E1 and E2 mRNA (CCNE1
and CCNE2) peak in mid-G1 to early S phase in multi-
ple models of mitotic division [4,5,10]. During S phase
cyclin E1 is rapidly downregulated via proteosomal
degradation (for reviews of cyclin E1 proteosomal
degradation see [2,49]). In brief, during early S phase
cyclin E1 is phosphorylated at conserved residues via
Cdk2 and GSK-3b, leading to recognition and ubiquiti-
nation of cyclin E1 by the ubiquitin ligase SCFFbw7, fol-
lowed by degradation during S phase [2,49]. The
turnover of cyclin E2 is reported to be regulated in a
similar manner [50] but has been examined in less
detail. Cyclin E1 turnover can also be mediated by ubi-
quitin ligase components Skp2 [51], Parkin [52] and
Cul4 [53], which may contribute to late S-phase degra-
dation of cyclin E1. The combination of transcriptional
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and post-translational regulation results in an intense
peak in expression of cyclin E1 in late G1 and early S
phase of the cell cycle. The activity of cyclin E1-Cdk2
and cyclin E2-Cdk2 complexes is further refined
through binding of the Cdk inhibitors p21Waf1/Cip1 and
p27Kip1, whose expression is also cell cycle regulated.
The cell cycle dependent transcription of the E-cyclins

is mediated by E2F transcription factors, which are acti-
vated via release from Rb during late G1 phase. Rb-defi-
cient cells have high expression of cyclin E1 and cyclin
E2 [45,54], likely due to constitutive E2F release, and
numerous gene expression array studies have confirmed
both CCNE1 and CCNE2 as E2F1, E2F2 and E2F3 target
genes [55-57]. E2F proteins interact with multiple co-reg-
ulators at the E-cyclin promoters, allowing for the input
of mitogenic signals. E2F1 recruits the histone acetylase
p300/CBP [58] and the co-activator SRC3 [59] to the
CCNE1 promoter. This complex further recruits the pro-
tein methyltransferase Carm1/PRMT4 to the CCNE1 and
CCNE2 promoters [60], leading to increased transcrip-
tion of at least the CCNE1 gene [60,61]. CCNE1

transcription is actively inhibited by Rb and the other
pocket proteins in G0 and G1 arrested cells [58,60,62-66]
and during late mitosis [67]. Rb, via an interaction with
inhibitory E2Fs (E2F4-6) recruits the histone deacetylase
HDAC1 [58,62,63], the methylation complex SUV39H1
and HP1 [64,65] and the BRG1/hBRM nucleosome remo-
deling complex [66] to the CCNE1 promoter, leading to
inhibitory deacetylation, methylation and remodelling of
the promoter-associated nucleosomes. The methlytrans-
ferase PRMT5, via binding partner COPR5 [68,69], also
negatively regulates CCNE1 and CCNE2 transcription
[70,71], especially during G0 [60].

Differential transcription of cyclin E1 and E2
CCNE1 regulation has been more closely characterised
than CCNE2, with an assumption of similar regulation
of the CCNE2 gene [3]. However, CCNE2 appears to be
inherently more sensitive to induction by E2F transcrip-
tion factors than CCNE1, with CCNE2 mRNA showing
a 1.5-10 fold greater induction than CCNE1 in 3 sepa-
rate studies [55-57]. The CCNE2 promoter also shows

Table 1 Attributes of the E-cyclins

Cyclin E1 (CCNE1) Cyclin E2 (CCNE2)

Chromosomal location 19q12 8q22.1

Isoforms 2 (Full length and 15 amino acid N-terminal truncation) 1

Transcriptional regulation Upregulated by: Upregulated by:

E2F1, E2F2, E2F3 [55-57] E2F1, E2F2, E2F3 [55-57]

P300/CBP [58], Src3 [59], Carm1 [60] P300/CBP*, Src3 [61], Carm1 [61]

Suppressed by: Chd8 [74,75]

HDAC1 [58,62,63], SUV39H1/HP1 [64,65], BRG1/hBRM
[66], PRMT5/COPR5 [68-71]

CDP/Cux p110 [47]

Suppressed by:

HDAC1*, SUV39H1/HP1*, BRG1/hBRM*, PRMT5/COPR5 [68-71]

miRNA regulation miR15b [86], miRNA 16 family [87] miR-9, miR-34c and miR200a [88], miR34a [89], miR26a [90]

Post-translational cleavage Yes [98] No [99]

Tissue expression Embryonic cells Embryonic cells

- Very high in mouse embryonic stem cells [45] - Absent in mouse embryonic stem cells [45]

- Sole E-cyclin from fertilisation to blastula stage in
Xenopus [39]

- Not expressed during embryonic cycles of Xenopus [39]

Adult tissues Adult tissues

- Mouse: moderate in brain, testes and thymus, low
in intestine and spleen [45]

- Mouse: high in testes, low to moderate in brain, intestine,
muscle and thymus [45]

- Human: very high in placenta, high in testes, low
to moderate in thymus, small intestine and colon
[5]

-Human: high in brain, placenta, testes and thymus, low to
moderate in spleen, thymus, small intestine and colon [5]

Polyploid cells Polyploid cells

- Low expression in mature trophoblast giant cells
[20]

- Sustained expression in mature trophoblast giant cells
[20]

- Low expression compared to CCNE2 in
hepatocytes [44]

- High expression compared to CCNE1 in hepatocytes [44],
increased expression with increased polyploidy [43]

Knockout mouse Normal fertility [13,20] Male infertility and testicular atrophy [13,20]

Slight delay in liver regeneration following partial
hepatectomy [44]

Accelerated liver regeneration and increased hepatocyte
polyploidy following partial hepatectomy [44]

* by inference from data on CCNE1
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greater enrichment for E2F binding by chromatin
immunoprecipitation [72]. Furthermore, overexpression
of a mutant E2F that derepresses but does not activate
transcription, significantly induces CCNE2 but not
CCNE1 [57]. Since E2F activity is a core component of
cell cycle progression, this suggests that CCNE2 expres-
sion may be more strongly amplified than CCNE1 in
each cell cycle. Interestingly, cyclin E2 becomes
expressed at high levels in immortalised mouse embryo-
nic fibroblasts derived from E2F1 knockout animals, and
is also expressed at high levels in chemically-induced
tumours derived from the same mice, without concur-
rent changes to cyclin E1 expression [73]. Consequently
cyclin E2 may be targeted independently of E2F factors,
or at least E2F1.
Two instances have been identified where CCNE2,

independently of CCNE1, is markedly upregulated by
E2F binding partners. Chd8, a chromatin remodelling
enzyme, facilitates efficient RNA polymerase II tran-
script elongation of a subset of genes, including E2F1
targets. While Chd8 can interact with E2F at the promo-
ters of both CCNE1 and CCNE2, its presence leads only
to the upregulation of cyclin E2 [74]. Chd8 binds consti-
tutively to the CCNE2 promoter throughout the cell
cycle, but it is required for the upregulation of cyclin E2
during estrogen rescue from anti-estrogen induced
quiescence [75], and as cells pass through the G1/S-
phase transition [74]. Rodriguez-Paredes et al propose
that Chd8 is recruited to all E2F1-dependent genes, but
that only those genes with a specific chromatin structure
at the 5’ region, such as CCNE2, utilise Chd8 to mobi-
lise RNA polymerase II and nucleosomes during tran-
script elongation [74]. A distinct chromatin structure
may explain why CCNE2 is inherently more sensitive to
E2F induction than CCNE1 as described above. Another
E2F1 co-activator, CDP/Cux p110, [76] also specifically
upregulates CCNE2 without alterations to CCNE1 [47],
although binding to the CCNE2 promoter was not
demonstrated.
Through their independent regulation by transcription

factors, cyclin E1 and cyclin E2 are associated with dif-
ferent networks of genes and thus potentially with dis-
tinct biological processes. Cyclin E2 is upregulated via
Chd8 downstream of cyclin D1 in estrogen-treated cells
[75], and has also been identified as downstream of
cyclin D1, or cyclin D1-mediated pathways, in other
models [77-79]. Cyclin E1 is often expressed at high
levels in the absence of increased cyclin D1 [80], and in
fact cyclin E1-Cdk2 activity is increased by estrogen in
breast cancer cells primarily through disengagement of
p21Waf1/Cip1 rather than transcriptional upregulation by
cyclin D1 [75]. In this same model, c-Myc is able to
induce cell cycle re-entry through the induction of
cyclin E1-Cdk2 activity, but without significantly

increasing the expression of cyclin E2 [75]. Thus cyclin
E1 and cyclin E2 are distinctly regulated downstream of
estrogen through the major regulatory proteins, cyclin
D1 and c-Myc [75]. This action may not be confined to
estrogen, as cyclin E2 is also induced by androgen, likely
downstream of cyclin D1 or D3, although this is not
independent of cyclin E1 upregulation [81].
The disparate tissue expression pattern of cyclin E1

and cyclin E2 also suggests that there is differential reg-
ulation of the E-cyclins [5,45]. For example, cyclin E2 is
expressed at high levels in human brain where cyclin E1
is notably absent [5], whereas cyclin E1 expression is
consistently higher than cyclin E2 in the thymus [5,45].
The inhibition of cyclin E1 transcription by cyclin E2
identified in hepatocytes may contribute to the differen-
tial expression of the E-cyclins in some tissues [44]. We
have made a similar observation in the breast cancer
cell line MCF-7 that cyclin E2 knockdown leads to an
increase in cyclin E1 protein levels, although this is
associated with decreased overall proliferation [75].
However, cyclin E2 modulation does not always lead to
changes in cyclin E1 expression, for example in smooth
muscle cells the cyclin E2 siRNA treatment leads to
downregulation of cyclin E1 [82], and cyclin E1 and E2
are co-expressed in other tissues [5,45], and in some
tumours [83].

Post-transcriptional regulation of cyclin E1 and E2
Another layer of complexity is added through the regu-
lation of the E-cyclins by non-coding RNAs. Despite
high conservation, the mRNA sequences of CCNE1 and
CCNE2 are predicted and validated targets of distinct
subsets of microRNAs (miRNAs) [84,85]. For example
CCNE1 is targeted by miR15b [86] and the miRNA 16
family [87], and CCNE2 by miR-9, miR-34c, miR-200a
[88], and miR34a [89]. miR-26a specifically targets
CCNE2 but not CCNE1 [90]. There is an expressed
anti-sense transcript which may further modulate
CCNE2 expression [91].
miRNAs frequently target gene networks to alter cel-

lular processes such as proliferation, which raises the
question why CCNE1 and CCNE2 appear to be targeted
as part of discrete regulatory modules if they are func-
tionally redundant proteins. These modules target dis-
tinct subsets of cell cycle proteins and may therefore
have subtly different effects on proliferation, for exam-
ple, mir16 co-represses CCNE1, CCND3 and CDC6
[87]. CCNE2 is independently downregulated by the
p53-regulated miRNA, miR34a, in colon cancer cells
[89]. This may explain why cyclin E2 mRNA and pro-
tein, but not cyclin E1, is induced after viral oncoprotein
E6 induces degradation of p53 in normal human fibro-
blasts [5]. Furthermore p53 expression suppresses
CCNE2 in prostate cancer cells [92], and the
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inactivation of p53 in the mammary gland leads to
tumours which are high in CCNE2 [93]. Consequently
CCNE2 is frequently suppressed downstream of the p53
tumour suppressor gene, linking CCNE2 to a network
of p53 activity independently of CCNE1 [89]. The miR-
NAs that regulate CCNE1 and CCNE2, as well as the
transcription factors discussed above, are often altered
in tumorigenesis, which may contribute to the distinct
associations of CCNE1 and CCNE2 to different cancer
types, as described below.

Associations of cyclin E1 and cyclin E2 with
cancer
Cyclin E1 is a well established oncogene, and its overex-
pression, especially in a hyperstable form, leads to
increased incidence of mouse neoplasia [94-96], and
increased susceptibility to other oncogenes [96]. Poten-
tial oncogenic effects of cyclin E2 have not been exam-
ined in mice, except that mouse embryonic fibroblasts
from the E-cyclin double knockout mice are not suscep-
tible to transformation [13]. Further evidence from cell
culture models indicates that cyclin E2 has similar pro-
liferative effects to cyclin E1 in cancer cells. The overex-
pression of either cyclin E1 or cyclin E2 leads to a
redistribution of cells within cell cycle phases, with a
shorter G1 [5], and a longer S phase at least in cyclin E1
overexpressing cells [23,31]. The siRNA-mediated
decrease of either E-cyclin severely attenuates the estro-
gen-induced proliferation of breast cancer cells [75], and
the reduction of either cyclin E1 or E2 leads to reduced
colony forming ability in oral squamous cell carcinoma
cells, although cyclin E1 ablation is more potent than
ablation of cyclin E2 (70% vs 20% reduction) [97]. Cyclin
E1 may have higher potency than cyclin E2 as it can be
cleaved into low molecular weight fragments with
enhanced oncogenic activity [98], and cyclin E2 does
not appear to be similarly processed [99].
While cyclin E1-Cdk2 and cyclin E2-Cdk2 kinase

activities are increased in breast cancer compared to
normal tissue [83], cyclin E1 and E2 expression and
kinase activity are not essential for proliferation of all
cancer cell types [97]. In some cases increases in cyclin
E2 expression are not associated with proliferation, but
instead with other oncogenic attributes such as invasion
[100] and drug resistance [101,102]. Cyclin E1 may
enhance tumorigenesis through increasing genomic
instability, an ability which may be derived from pro-
moting premature replication licensing and endoreplica-
tion [96,103]. Specific experiments have not been
reported that examine whether genomic instability is
also induced through cyclin E2 overexpression. Given
that recent evidence seems to identify cyclin E1, but not
cyclin E2, as a mediator of endoreplication in

hepatocytes [44], cyclin E1 and E2 may not have equiva-
lent roles in the induction of genomic instability.
Due to the limited availability of antibodies suitable

for immunohistochemistry, the expression of cyclin E2
has been examined only through mRNA expression in
tumour samples, whereas there is a comprehensive array
of literature on the expression of both cyclin E1 protein
and mRNA in cancer samples [2,104]. CCNE1 and
CCNE2 expression has been compared in breast cancer,
where these studies are representative of the majority of
studies on the relationship of CCNE1 to breast cancer
[104]. Both CCNE1 and CCNE2 are expressed at higher
levels in breast cancer, with an association of both genes
to increased tumour grade [105,106], estrogen receptor
(ER) negative status [105,106], progesterone receptor
negative status [106], and proliferative index by Ki67
staining [83,105]. High levels of CCNE1 have a more
significant relationship than CCNE2 with each of these
parameters. Both CCNE1 and CCNE2 have an inverse
linear relationship between expression and metastasis-
free survival, which is particularly strong for CCNE2
[107], and high expression of each E-cyclin mRNA also
predicts poor overall survival [106] and shorter relapse-
free interval [105]. One study also found some correla-
tion between the expression of CCNE1 and CCNE2
[83], although each E-cyclin is independently corrleated
to poor overall and metastasis-free survival [106].
CCNE2 is also a component of three prognostic gene
expression signatures that predict shorter metastasis-free
survival or relapse-free survival of breast cancer patients,
whereas CCNE1 does not feature in any of these signa-
tures [108-110].
Differences become apparent between CCNE1 and

CCNE2 in their relationship to survival and response to
therapy of ER positive and anti-estrogen (tamoxifen)
treated patients. High CCNE1 expression predicts
shorter metastasis-free survival in both ER negative and
ER positive patients, whereas CCNE2 expression is only
predictive for the ER positive patient subset [105,106].
By contrast, in primary tumours high levels of CCNE1,
but not CCNE2, predict a shorter relapse-free interval of
tamoxifen-treated patients [105]. However CCNE2 has
been detected at high levels in recurrent disease after
tamoxifen treatment [111], hinting at a functional, if not
prognostic, role. In tamoxifen resistant cell lines,
CCNE2, but not CCNE1, is induced as part of the ago-
nist response to tamoxifen [112]. Anti-estrogen resis-
tance in MCF-7 breast cancer cells conferred by the
TNFa inhibitor, A20, is also associated with increases in
cyclin E2 expression [113]. This is consistent with stu-
dies in estrogen-responsive breast cancer cell lines
where cyclin E2 is a highly estrogen responsive target,
whereas cyclin E1 is only marginally increased [75,114].
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CCNE1 is expressed at high levels in multiple
tumour types other than breast [2]. CCNE2 shows
moderate increases in expression in various malignan-
cies, such as lung, ovarian, nasopharyngeal, colorectal,
non small cell lung cancer and leukaemia
[83,88,115-117], and these increases in expression are
frequently not correlated to CCNE1 expression [83]. In
two studies the expression of CCNE2 is lower in ovar-
ian and non small cell lung tumours than matched
controls, whereas CCNE1 expression remains
unchanged or increases [118,119]. Two further studies
indicate that CCNE2 is expressed at significant levels
in recurrent disease, including therapy-related myeloid
leukemia [120] and recurrent non small cell lung carci-
noma [121]. These data reflect the more comprehen-
sive data collected with respect to breast cancer, where
CCNE2 expression is frequently upregulated in
tumours independently of CCNE1, and CCNE2 is
often detected in recurrent disease.

Concluding remarks
Cyclin E1 and E2 display largely overlapping functions,
and high redundancy. Does the presence of two E-
cyclins provide a safety net to ensure proliferative
potential, or do they have unique functions? The E-
cyclin gene pair has been maintained without significant
divergence throughout the evolution of higher eukar-
yotes, implying a selective pressure for the maintenance
of each gene. Genome wide studies in yeast have found
that apparently redundant paralogs do in fact have dis-
tinct and non-overlapping functions, although these
only become evident in circumstances of stress or parti-
cular stimuli [122]. This is certainly the case for cyclin
E1 and E2, where cyclin E1 promotes hepatocyte endor-
eplication after liver injury, whereas cyclin E2 sup-
presses this process [44]. Further differences between
cyclin E1 and cyclin E2 are possibly found during meio-
sis and embryogenesis [13,39]. There are tantalising
observations on the activity of cyclin E in Drosophila
and C. elegans which suggest that there may be addi-
tional functions for the E-cyclins in DNA replication of
embryonic cells and lineage determination of stem cells.
Consequently the differences between cyclin E1 and E2
may be more apparent in non-mitotic cell cycles than
in normally proliferating cells, which may explain their
apparent redundancy in common laboratory model
systems.
Cancer cell cycles represent another form of aberrant

cell division, often compared to embryonic cell cycles,
and cyclins E1 and E2 promote oncogenic transforma-
tion and to promote cancer cell proliferation [13]. Data
from cancer studies have already identified that cyclin
E1 and E2 are frequently not co-expressed in tumours,
and may have distinct associations with recurrent

disease. A likely explanation for the discordant expres-
sion of cyclin E1 and E2 in cancer is their regulation by
distinct subsets of transcription factors and miRNAs.
The expression of cyclin E2, independently of cyclin E1,
can be induced via cyclin D1, Chd8 and CDP/Cux, all
of which are upregulated in cancers [47,123], and cyclin
E2 is also independently suppressed by the tumour sup-
pressor p53 [89]. The co-regulation of cyclin E1 and
cyclin E2 with distinct gene sets could explain the dif-
ferent relationship of each gene to disease. For example,
cyclin E2, which is a target of cyclin D1 and Chd8 in
estrogen-responsive cells [75], has been associated with
poor outcome only in ER-positive breast cancers [106],
which resembles the association of cyclin D1 overex-
pression to ER-positive but not ER-negative breast can-
cers [124]. The functional outcome of overexpression of
cyclin E1 compared to cyclin E2 is not known. How-
ever, given the potential differences in function in
endoreplication and other processes, cyclin E1 and
cyclin E2 may have distinct attributes that contribute to
cancer progression.
The cyclin and Cdk proteins of the cell cycle have

considerable redundancy and compensation between
members of each family [125], yet careful study reveals
unique functions of many of these proteins. For exam-
ple, cyclin D2 knockin cannot completely substitute for
cyclin D1 in mouse development [126]. Recent data on
the function and regulation of cyclin E1 and cyclin E2
demonstrates that they are also not redundant homologs
(Table 1). The identification of cyclin E1 as promoting,
and cyclin E2 as repressing, hepatocyte endoreplication
deserves further investigation to unravel the mechanistic
difference between the two proteins. Cyclin E1 and E2
should also be investigated as distinct entities in cancer
studies, especially in the context of examining relation-
ships with other markers of tumorigenesis such as cyclin
D1 and p53. There will be difficulties in ongoing studies
on cyclin E1 and cyclin E2 as they do have considerable
functional redundancy in their interactions with Cdk2
and Cdk inhibitor proteins, as well as having the poten-
tial to regulate one another. The identification of further
differences between the E-cyclins is likely to require an
appropriate molecular environment that highlights their
differences, such as during endoreplication or the prolif-
eration of cancer cells.
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