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Abstract

Abpl, and the closely related Cbhl and Cbh2 are homologous to the human centromere-binding
protein CENP-B that has been implicated in the assembly of centromeric heterochromatin. Fission
yeast cells lacking Abp| show an increase in mini-chromosome instability suggesting that Abpl is
important for chromosome segregation and/or DNA synthesis. Here we show that Abp| interacts
with the DNA replication protein Cdc23 (MCMIO0) in a two-hybrid assay, and that the dabp|
mutant displays a synthetic phenotype with a cdc23 temperature-sensitive mutant. Moreover,
genetic interactions were also observed between abp/* and four additional DNA replication
initiation genes cdc/8*, cdc2 1+, orcl*, and orc2*. Interestingly, we find that S phase is delayed in cells
deleted for abp I * when released from a G| block. However, no delay is observed when cells are
released from an early S phase arrest induced by hydroxyurea suggesting that Abp| functions prior
to, or coincident with, the initiation of DNA replication.

Background

DNA replication requires the assembly of replicative com-
plexes (RCs) at chromosomal replication origins. The first
step in this process involves assembly of pre-RCs in early
G1 [1-6]. Formation of these complexes is restricted to a
period of the cell cycle following conclusion of mitosis
when cyclin-dependent kinase (Cdk) activity is low [7-9].
Subsequent conversion of the pre-RC to an active replica-
tive complex at the beginning of S phase is dependent on
re-activation of Cdk activity that leads to the recruitment
of essential replication proteins to origin DNA. This
mechanism ensures that cells replicate once and only once

during each cell division cycle [10]. Unlike simple organ-
isms like bacteria, yeast requires that initiation of DNA
replication occur on chromatin-bound templates.
Although the details of how replication occurs on chro-
matin are poorly understood, it is possible that remode-
ling activities that promote protein-protein and protein-
DNA interactions on chromatin are important to allow
efficient replication of these templates [11-13].

Two proteins that are believed to be required for assembly
of pre-RCs in fission yeast are Cdc18 (Cdc6) and Cdtl
(Cdtl) [14-18]. For clarity, all S. pombe gene/protein

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17112379
http://www.celldiv.com/content/1/1/27
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Cell Division 2006, 1:27

names will be followed by the corresponding S. cerevisiae
gene/protein name in parentheses, where a clear homolog
exists. These proteins facilitate the loading of Mini-Chro-
mosome-Maintenance (MCMs) proteins to origin DNA in
early G1 [19-21]. The Mcm2-7 complex is believed to
function as the DNA replicative helicase that unwinds ori-
gin DNA at the start of S phase [22-24]. Two additional
proteins, Sna41 (Cdc45) and Cdc23 (Mcm10) interact
both physically and genetically with components of the
initiation complex, and are believed to be important for
recruitment of DNA polymerases to the origin-associated
pre-RC [25-31].

The cdc23 (MCM10) mutant of S. pombe was originally
identified as a cell cycle mutant defective in the comple-
tion of DNA synthesis and was later shown to block in
early S phase [28,32]. Subsequent cloning and characteri-
zation of the cdc23 (MCM10) gene demonstrated that it is
homologous to S. cerevisiae MCM10, and was capable of
rescuing the budding yeast mcm10 mutant, dna43-1 [33].
In S. cerevisiae, Mcm10 binds to replication origins during
G1 and S phase suggesting it plays a critical role in both
initiation and elongation of DNA replication [29]. How-
ever, in fission yeast it is not yet clear whether Cdc23
(Mcm10) binds origins in a cell cycle dependent manner
[34]. More recently, Cdc23 (Mcm10) has been shown to
interact directly with DNA polymerase o/primase and to
stimulate primase activity in wvitro [29,35]. Cdc23
(Mcm10) has been shown to genetically and physically
interact with components of the pre-RC, including Mcm?2,
4, 5 and 6 and to facilitate chromatin binding of Cdc45
[28,37]. Two-hybrid analysis also shows that Cdc23
(Mcm10) can interact with Orcl, 2, 5, and 6 [28,36].
These data strongly support a role for Cdc23 (Mcm10) in
the initiation of DNA replication. Also, biochemical anal-
ysis of purified Cdc23 (Mcm10) protein demonstrates
that it is required for efficient phosphorylation of the
Mcm2-7 complex by Dfp1-Hskl (Dbf4-Cdc7) kinase in
vitro, and that Cdc23 (Mcm10) can directly interact with
Dfp1-Hsk1 (Dbf4-Cdc7) [37].

Ars binding protein 1 (Abpl) was first identified in a
search for fission yeast proteins that could retard an ARS
(Autonomously Replicating Sequence)-containing DNA
fragment in a gel-shift mobility assay [38]. Although Abp1
was shown to be non-essential [39], the protein could
bind very tightly to ARS elements in vitro. Independently,
Abp1 was also identified as a protein that could bind cen-
tromeric DNA sequences [39]. These regions of DNA typ-
ically contain high concentrations of ARS-related
sequences (Takahashi et al, 1992). Consistent with a role
in either DNA replication or chromosome segregation
deletion of abpl+ was shown to decrease mini-chromo-
some stability [39]. When carefully analyzed, many of the
cells deleted for abpi+ displayed segregation defects sug-
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gesting that Abp1's primary function may be to ensure
proper chromosome segregation at the conclusion of
mitosis [39]. However, these observations do not rule out
the possibility that Abp1 has a role in DNA replication.
Moreover, two additional S. pombe Abp1-related proteins,
called Cbhl and Cbh2, have been identified and like
Abp1, both were shown to be non-essential for viability
[40-42]. However deletion of both Abp1 and Cbh1 lead to
loss of viability and dramatic morphological changes,
including branching and cell elongation. Therefore the
function of these proteins is likely to be redundant and
essential for normal cell cycle progression [42,43]. More
recently, Abp1l has been shown to bind directly to the
outer repeats of the S. pombe centromere, promoting spe-
cific histone modifications that lead to the recruitment of
Swi6 and gene silencing [44]. Although currently there is
no evidence to suggest that either Abp1 or Swi6 interact
with other regions of the genome apart from centromeres
and telomeres, it is possible that they interact specifically
with replication origin DNA and that their presence at
these sites regulate initiation of DNA replication.

Using a two-hybrid system, we have identified Abp1 as a
protein that interacts with Cdc23 (Mcm10). Genetic inter-
actions between a cdc23 (mcml10) temperature-sensitive
mutant and the Aabp1 strain provide further support that
these two proteins functionally interact. We also show
that deletion of abp1+ results in a delay in S phase when
released from a G1 block consistent with Abp1 having a
role in DNA replication initiation.

Results

A two-hybrid screen identifies Abp | as a protein
interacting with Cdc23

To provide additional insights into how Cdc23 (Mcm10)
might function during DNA replication initiation, we
conducted a two-hybrid interaction screen to identify
cDNAs encoding proteins that interact with Cdc23
(Mcm10). One of the proteins identified several times in
our screen was ARS-binding protein 1 (Abp1l), a protein
previously shown to interact with both replication origins
and centromere-associated DNA sequence elements.
Cdc23 (Mcm10) fused to the DNA binding domain of
Gal4 was able to activate lacZ expression from the GAL1
promoter when co-expressed with Abp1 fused to the Gal4
activation domain (Fig. 1A, row 1). As a negative control,
when Abp1 was replaced with either Skb1 or Snf4 no LacZ
expression was observed (Figure 1A, rows 2 and 3). The
two-hybrid interaction between Snf1 and Snf4 is shown as
a positive control (Figure 1A, row 4). These two transcrip-
tion factors have been previously shown to interact using
the two-hybrid assay (Durfee et al, 1993).

Consistent with the lacZ data, Cdc23 (Mcm10) fused to
the DNA binding domain of Gal4 activated HIS3 under
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Cdc23 physically interacts with Abpl in a yeast two-hybrid cDNA library screen. Row |: Cdc23-Abp| interaction; rows2, 3:
negative controls; row 4: Snfl/Snf4 positive control. (A). B-galactosidase assay. (B). HIS3 expression in the presence of 50 mM

3-AT. All experiments shown in triplicate.

the control of the Gal4 promoter when co-expressed with
Abp1 fused to the Gal4 activation domain (Figure 1B, row
1). Co-expression with either Skb1 or Snf4 failed to acti-
vate HIS3 (Figure 1B, row 2 and 3) suggesting that the
interaction of Cdc23 and Abp1 in the two-hybrid system
is specific. As expected, the positive control, Snfl/Snf4
was also able to confer HIS prototrophy (Figure 1B, row
4).

Genetic interactions between Cdc23 and Abp|

To further explore potential interactions between Cdc23
(Mcm10) and Abp1, we tested whether mutants defective
for Cdc23 (Mcm10) display genetic interactions when
crossed to the dabpl strain. Cells deleted for Abp1 were
previously reported to have a slow growth phenotype but
otherwise to appear normal. Similarly, Cbh1 or Cbh2 are
non-essential for viability (Table 1). However, cells
deleted for both abp1+and cbh1+fail to form colonies, sug-
gesting that these proteins provide an essential, albeit
redundant, function (data not shown). Cells deleted for
abp1+, cbh1+ and cbh2+ arrest with a highly elongated and
branched terminal morphology [42,43]. We confirmed
these results by examining the triple deletion mutant fol-
lowing tetrad analysis (data not shown). In order to better

visualize the terminal phenotype of the triple deletion
mutant, we constructed a strain deleted for abp1+, cbhl+,
and cbh2+ containing an integrated copy of abpl+ under
the control of the thiamine repressible nmt promoter.
When shifted to media containing thiamine (to repress
transcription from the nmt41-abpl+ gene), this strain
appeared highly elongated and branched, indicating that
both cell cycle progression and morphology are affected
(Figure 2). The cdc23-M36 mutant was crossed to the indi-
vidual mutants Adabpl, Acbhl or Acbh2 and double
mutants were isolated. As originally reported, cdc23-M36
fails to form colonies at the restrictive temperature of
36°C, but is viable at the intermediate temperature of
30°C (Figure 3A, lower panel, row 3). We found that the
double mutant cdc23-M36 Aabp1 is less viable then either
cdc23-M36 or Aabpl when grown at 30°C (Figure 3A,
lower panel, row 4), consistent with our two-hybrid data
suggesting that Cdc23 (Mcm10) interacts directly with
Abp1. We also tested whether the ¢dc23-M36 mutant dis-
plays a synthetic phenotype when combined with dele-
tion of either cbhl or cbh2, but no genetic interactions
were observed (Table 2). Therefore the genetic interaction
observed between cdc23-M36 and Aabpl appears to be
Abp1-specific.
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Table I: Phenotype of abp |, cbhl, and cbh2 deletion strains
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S. pombe strain Growth Phenotype

Wild type +H++ Wild type

Aabpl ++ Wild type

Acbhl +++ Wild type

Acbh2 +++ Wild type

Acbh | Acbh2 ++ Slightly elongated

Aabp | Acbh2 + Slightly elongated

Aabp | Acbh| - Highly elongated/branched, multisepta
Aabp | Acbh | Acbh2 - Highly elongated/branched, multisepta
Note: ++++ = normal growth rate; +++ = slightly slow growth; ++ = slow growth rate; + = very slow growth rate; - = inviable, no growth

We then examined the terminal phenotype of either the
cdc23-M36 mutant alone or the cdc23-M36 Aabp1 dou-
ble mutant following shift to the semipermissive temper-
ature of 30°C. We analyzed DNA content by flow
cytometry to determine the precise arrest points for the

different strains (Figure 3B). As expected, wildtype or
mutant cells grown at the permissive temperature of 25°C
display a 2C DNA content, indicating that most cells
when growing exponentially are in the G2 phase of the
cell cycle. Upon shift to 30°C, cdc23-M36 Aabp1 double

Table 2: Synthetic Interactions between dabpl and DNA replication mutants.

S. pombe strains Gene product 25°C 30°C 31°C 32°C 33°C 34°C 36°C
Wild type ++ ++ ++ ++ ++ ++ ++
Aabp| + + + + + + +
cdc23-M36 S phase factor ++ ++ ++ - . N .
Aabp | cdc23-M36 + - - - - - -
Aabp | Acbh2 + + + + + + +
Aabp | Acbh2 c¢dc23-M36 + - - - - - -
Acbh | Acbh2 + + + + + + +
Acbh | Acbh2 cdc23-M36 + + +/- - .
cdc20-P7 DNA polymerase ++ ++ ++ ++ ++ - -
Aabp| cdc20-P7 € catalytic subunit + + + + + R R
cdc20-M10 DNA polymerase ++ ++ ++ ++ ++ +/- -
Aabp | cdc20-M10 € catalytic subunit + + + + + + -
cut5-T401 S phase initiator ++ ++ ++ ++ ++ - -
Aabp | cut5-T401 + + + + + - -
cdc30-2H4 ORC complex ++ ++ ++ +/- - - -
Aabp| cdc30-2H4 + + +/- - - - -
cdcl8-K46 S phase initiator ++ ++ ++ ++ ++ + -
Aabp | cdcl 8-K46 + + + + +/- - -
cdc21-M68 MCM2-7 complex ++ ++ ++ + + N _
Aabp | cdc21-M68 subunit 4 + + + +/- - - -
sna41-912 S phase initiator ++ ++ +/- - - - -
Aabp | sna41-912 + + +/- - - - -
orp2-2 ORC complex ++ ++ ++ ++ + - -
Aabp | orp2-2 + + + + + + _
orp2-7 ORC complex ++ ++ ++ ++ ++ ++ +
Aabp | orp2-7 + + + + + + -
cdcl-PI3 DNA polymerase ++ ++ - - - - -
Aabp | cdcl-P13 O small subunit + + + - - - -
cdc6-23 DNA polymerase ++ - - - - - -
Aabp | cdc6-23 § catalytic subunit + +/- - - - - -
cdc27-Pl 1 DNA polymerase ++ ++ ++ ++ - - -
Aabp | cdc27-P11 0 associated factor + + + + +/- - -
cdcl7-M75 DNA ligase ++ ++ + +/- - - -
Aabp | cdcl 7-M75 + + + + + +/- -
Note: ++ = normal growth; + = slow growth; +/- = very slow growth, elongated; = dead, elongated
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Depletion of Abp| protein in the triple deletion Aabp! Acbh| Acbh2 int. nmt81-abp |* mutant strain leads to cell cycle arrest.
Phase contrast microscopy shows cells to be highly elongated 24-36 hrs following addition of 10 pg/jl thiamine (to repress

transcription of the abp /* gene) indicating that cell cycle progression is blocked. Cells also show other morphological defects
including multi-septation and branching. Left panel: Control (no thiamine). Right panel: Cells after 24 hours of thiamine treat-

ment.

mutants accumulate with a 1C DNA content indicative of
a block to DNA replication initiation. The appearance of
this peak is also observed in the cdc23-M36 mutant alone,
suggesting that depletion of Abp1 does not dramaticall y
change the arrest point of cdc23 mutants, although these
cells grow poorly (Figure 3A, lower panel, row 4). Similar
to previous reports that show cdc23 (MCM10) mutants
arresting in S phase when shifted to 36°C, cdc23
(MCM10) mutants grown at 30°C show a pronounced
cell cycle delay in early S phase [33]. This is consistent
with its proposed role in initiation and further supports
the notion that Abp1 interacts with a protein required for
DNA replication initiation.

We also tested whether loss of Abp1 displays a synthetic
phenotype with other mutants defective in DNA replica-
tion. Of the 14 mutants tested, dabpl showed negative
genetic interactions with four additional temperature-sen-
sitive mutants, orp2-7 (ORC2), cdc30-2H4 (ORC1), cdc18-
D46 (CDC6) and cdc21-M68 (MCM4), all of which

encode proteins essential for DNA replication initiation
(Table 3). Interestingly, the orc2-2 allele was partially sup-
pressed by deletion of abp1. On the other hand, no nega-
tive synthetic phenotypes were observed between Aabp1l
and mutants defective in DNA replication elongation,
including cdc1-P13 (POL31), cdc6-23 (POL3), cdc17-M75
(CDCY), cdc27-P11 (POL32). However, all of elongation
mutants tested were partially suppressed by loss of abpl
(see Table 3). It is not yet clear why disruption of abp1
might lead to suppression of these mutants. Moreover, the
Aabp1 strain is not sensitive to treatment with hydroxyu-
rea (Figure 4). Taken together, these results are consistent
with Abp1 having a specific role during initiation.

Deletion of abp I* causes a cell cycle delay prior to
initiation of DNA replication

The observation that Cdc23 (Mcm10), an essential repli-
cation factor, interacts genetically with Abp1 raised ques-
tions concerning the potential role of Abpl in DNA
replication. Although Abp1 was originally identified as a
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Figure 3

Genetic interactions between cdc23 and abp . (A). The double mutant cdc23-M36 Aabp | displays synthetic lethality at 30°C.
Serial dilutions of cdc23-M36, Aabp | and cdc23-M36 Aabp |, followed by incubation for 4 days at 25°C (upper panel) and 30°C
(lower panel). (B). Cell cycle progression profiles of Aabp [, cdc23-M36 and cdc23-M36 Aabp| at 30°C (from 1-6 hrs) and
25°C at time zero, by flow cytometry anaylsis. Both cdc23-M36 and cdc23-M36 Aabp| show G1/S delay.

protein that binds to ARS (autonomously replicating
sequences) in vitro, there was little evidence to support a
role for this protein in DNA replication. Subsequently it
was shown that Abp1l binds to centromere elements and
that deletion of Abp1 results in a high frequency of chro-
mosome mis-segregation. However, errors in DNA repli-
cation can also result in mis-segregation of chromosomes
raising the possibility that Abpl might have a role in S
phase. To test whether cells deleted for Abp1 have any
defects in their ability to replicate DNA, we monitored
DNA content in cells following release from a G1 block.
To arrest cells in G1, we constructed the double mutant
cdc10-129 Aabpl and shifted these cells to the restrictive
temperature for cdc10-129 (36°C). Upon return to the

permissive temperature, cells enter S phase synchronously
and in the case of the ¢dc10-129 mutant alone, DNA rep-
lication is completed within two hours (Figure 5A, cdc10-
129). However, in the double mutant, cdc10-129 Aabp1, S
phase is delayed and there are still cells remaining in G1
150 mins following release (Figure 5A, cdc10-129 Aabp1).
More importantly the persistence of the G1 peak 90 mins
post-release suggests that the initiation events are specifi-
cally inhibited in cells lacking Abp1. Consistent with this
idea, when Aabp1 cells are released from an early S phase
arrest induced by hydroxyurea, rather than from a Gl
block, no delay in DNA replication is observed suggesting
that Abp1 is specifically required during DNA replication
initiation (Figure 5B).
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Table 3: List of Strains used
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ade6-704 leul-32 ura4-D18 h-

abp | ::ura4*adeé-704 leu!-32 ura4-D18 h

abp I :ura4*ade6é-704 leul-32 ura4-D 18 h*

cbhl:his3*adeé-704 leul-32 ura4-D18 his3-D| h*

cbh2::sup3.5 ade6-704 leul-32 ura4-D18 his3-D1 h-

abp I ::ura4*cbh2::sup3.5 ade6-704 leul-32 ura4-D18 h-

cbh | :his3*cbh2::sup3.5 ade6-704 leul-32 ura4-D18 his3-D1 h-

abp | :ura4*cbh I :his3*abp3::sup3.5 int. nmt8 1-abp | *adeb-704 leul-32
ura4-D18 his3-D| h-

cdc23-M36 adeé-704 leu!-32 ura4-D18 his3-D | h-

cdc23-M36 ade6-704 leul-32 ura4-D 18 his3-DI h*

cdc23-M36 abp I ::ura4*ade6-704 leul-32 ura4-D18 h-

cdc23-M36 cbhl:his3*adeé-704 leul-32 ura4-D 18 his3-D | h-
cdc23-M36 cbh2::sup3.5 adebé-704 leul-32 ura4-D18 h-
cdc23-M36 abp | ::ura4*cbh2::sup3.5 ade6-704 leul-32 ura4-D18 h-

cdc23-M36 cbhl:his3*cbh2:sup3.5 ade6-704 leul-32 ura4-D18 his3-D1 h-

cdcl8-K46 ura4-D18 h-

cdc| 8-K46 abp | ::ura4*ade6é-704 leul-32 ura4-D18 h-
¢dc20-P7 ade6-704 leul-32 ura4-D18 h*

¢dc20-P7 abp I ::ura4*adeé-704 leul-32 ura4-D18 h-
cdc20-M10 leul-32 ura4-D18 h-

cdc20-M 10 abp I ::ura4*ade6-704 leul-32 ura4-D18 h-
cdc2 [-Mé8 adeé-704 ura4-D18 h-

cdc21-Mé8 abp | ::ura4*adeb-704 leul-32 ura4-D18 h-
¢dc30-2H4 ura4-D18 h-

cdc30-2H4 abp | :ura4*ade6-704 leul-32 ura4-D18 h-
cut5-T401 leul-32 ura4-D18 h-

cut5-T401 abpl::ura4*ade6é-704 leul-32 h-

sna41-912 ade6-704 leul-32 ura4-D18 h-

sna41-912 abp I::ura4*adeé-704 leul-32 ura4-D18 h-
orp2-2 leul-32 ura4-D18 h-

orp2-2 abpl::ura4*adeé-704 leul-32 ura4-D18 h-
orp2-7 leul-32 ura4-D18 h-

orp2-7 abp I::ura4*ade6-704 leul-32 ura4-D18 h-

cds | ::ura4* ade6é-704 leul-32 ura4-D18 h-

P. Nurse
P. Nurse
L. Clarke
Y. Murakami
This study
This study
This study
This study
This study

P. Nurse
This study
This study
This study
This study
This study
This study

P. Nurse
This study

P. Nurse
This study

P. Nurse
This study

P. Nurse
This study

P. Nurse
This study

M. Yanagida
This study
S. Yamashita
This study
J. Leatherwood
This study
). Leatherwood
This study
A. Carr

Discussion

Initiation of DNA replication from chromatin-bound
templates raises important questions concerning how
DNA replication complexes gain access to origin DNA. It
is likely that many auxiliary factors contribute to the
assembly of both the pre-RC and its subsequent conver-
sion to a fully functional replication fork on chromatin.
Yeast genetics has provided a powerful tool to identify
some of the key proteins that are required for assembly of
these complexes. One of these proteins, called Cdc23
(Mcm10), is conserved from yeast to man, and is required
for the early events of DNA replication initiation. It has
been shown to interact directly with DNA polymerase
alpha/primase and to stimulate primase activity in vitro.
However, its precise role in S phase is still unclear. In an
attempt to gain some insights into the function of Cdc23,
we conducted a two-hybrid screen for Cdc23-interacting
proteins. One of the proteins identified using this screen
is Abp1, a protein that had previously been shown to bind
to both ARS elements and centromeric DNA sequences.

Although its primary function is thought be in chromo-
some segregation, we show that Abp1l may also have an
additional role in DNA replication initiation.

First, Abp1 not only interacts with Cdc23 (Mcm10) pro-
tein in the two-hybrid analysis, but deletion of Abp1 low-
ers the restrictive temperature for cdc23-M36, consistent
with its proposed role in DNA replication. Although two
other proteins show significant homology to Abp1, dele-
tion of either of these does not alter the phenotype of the
cdc23 temperature-sensitive mutant, suggesting that
Cdc23 (Mcm10) specifically interacts with Abp1. Further-
more, a more extensive genetic analysis of double mutants
between Aabp1 and other replication mutants reveals that
Aabpl genetically interacts with both orc2-7 and cdc30-
2H4 (encoding a mutant form of Orcl and Orc2, respec-
tively) and cdc18-K46 (CDC6) and cdc21-M68 (MCM4)
(two mutants that are defective in the assembly of the pre-
RC) providing additional evidence that Abp1 interacts
with components of the replication initiation complex.
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5mM HU

Acds1
Aabp1

Acds1

Aabp1

Aabp | is not sensitive to hydroxyurea treatment. Cells were plated on YEA plates containing the indicated concentrations of
hydroxyurea (HU) and incubated for 5 days at 32°C. Each row represents a sequential five-fold serial dilution of the initial plat-
ing of 105 cells. The control strain Acds! looses viability at very low concentrations of HU (2.5 mM) and fails to form colonies
at the higher concentrations of 5 and 10 mM HU. Cdsl| is essential for the intra-S phase checkpoint activated in response to
replication blocks [47]. In contrast, wildtype (wt) or dabp ! display similar sensitivity to HU that is only observed at the highest

concentration of 10 mM.

Our flow cytometry analysis suggests that cdc23+
(MCM10) is required for DNA replication initiation. Pre-
vious studies also indicate that following a shift to the
restrictive temperature of 36°C, cdc23 temperature-sensi-
tive mutant cells arrest in early-S phase [32]. In our exper-
iments a shift to the semi-permissive temperature of 30°C
causes accumulation of cells with what appears to be a
near 1C or Gl1-like DNA content suggesting that Cdc23,
like its counterpart Mcm10 in budding yeast, is required
for DNA replication initiation. This confirms that Abpl
interacts with a bona-fide DNA replication initiation pro-
tein.

Finally, we demonstrate, that cells deleted for Abpl are
significantly delayed from entering S phase following
release from a G1 block. This delay is only observed fol-
lowing arrest in G1, and is not observed following release
from an S phase arrest imposed by hydroxyurea. This
implies that loss of Abp1 during S phase has no effect on
replication kinetics, whilst loss of Abp1 prior to S phase
can impede initiation.

It is still not clear how Abp1 might function to facilitate
DNA replication initiation. One possibility is that Abp1,

together with other chromatin-bound proteins, is impor-
tant to remodel replication origins to allow access to the
replication machinery. Alternatively, Abp1 might have a
specific function in regulating origin firing in centromeric
repeats. Interestingly, Abp1 has been shown to be impor-
tant for heterochromatin modifications that are required
for recruitment of Swi6 to chromatin where Swi6 is then
responsible for nucleating formation of silent chromatin.
So at least in this case, the presence of Abp1 can directly
influence chromatin structure in relationship to DNA
transcription. Note that the outer repeat region of the cen-
tromere where Abp1 binds was shown to be rich in ARS
elements, and the ARSs were indeed functional as early
replication origins [45]. It will be interesting to determine
if Abp1, perhaps in conjunction with particular histone
modifications and Swi6, may play a similar role in DNA
replication.

Methods

Yeast strains and methods

S. pombe strains used in this study (Table 1) were derived
from 972 h-and 975 h* using standard genetic methods
(Leupold, 1970). All media and growth conditions were
as previously described (Moreno et al., 1991).
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Cell cycle delay observed in Aabp | strain is due to a DNA replication initiation defect. FACS analysis (DNA content) for Aabp |
strain (wild-type (wt) as control). (A). After release from cdc/0-129 block. (B). After release from HU block.

Two-hybrid analysis

The cdc23+ gene (bait) was cloned into pAS1 and co-trans-
formed with pACT2 containing a S. pombe cDNA library
(kindly provided by S. Elledge) into strain Y190 (MATa
gald gal80 his3 trp1-901 ade2-101 ura3-52 leu2-3,-112,
URA3::GAL-lacZ, LYS2::GAL(UAS)-HIS3 cyh'2). The histi-
dine and f3-gal assays were performed as previously
described [46].

Construction of Acbhl and Acbh2 strains

Deletion strains for c¢bh1+ and cbh2+ were created using
one-step gene replacement strategy. A 7.2 kb Xbal/Apal
DNA fragment containing the 1.6 kb cbhi1+ gene and its
flanking regions was digested from the c9E9 and inserted
into pBluescript-KS generating the plasmid pKS-cbhi+. A
6.4 kb Bglll/Kpnl genomic fragment containing the entire
cbh2+ coding region and its flanking regions was sub-
cloned into pBluescript-KS from c14F5 generating pKS-
cbh2+. To generate the plasmid Acbhl:: his3+, the pKS-cbh+

recombinant plasmid was amplified in a Dam - E. coli
strain, digested with Bcll, which removed the cbh1+ coding
region almost entirely (from position 301), and replaced
it with the his3+ auxotrophic gene, obtained by digesting
pAF1 with Bglll. The resulting Acbhl::his3+ plasmid was
linearized and transformed into the diploid strain with
the following genotype: leul-32/leul-32 ade6-M210/adeG-
M216 ura4-D18/ura4-D18 his3-D1/his3-D1 h*/h-. Colonies
that grew in agar plates lacking histidine were selected and
the deletion confirmed by Southern Blot analysis. To con-
struct the recombinant vector Acbh2::sup3.5*, the entire
cbh2+ ORF was deleted by inverse PCR from the pKS-cbh2+
plasmid and replaced by the sup3-5 gene (0.5 kb). This
plasmid was then transformed into the diploid strain with
the following genotype: leul-32/leul-32 ade6-704/adeG-
M216 ura4-D18/ura4-D18 his3-D1/his3-D1 h*/h-. Haploid
colonies growing in the absence of adenine were selected.
DNA was extracted, digested with HindIIl the deleletion
confirmed by Southern blot.
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Construction of Aabpl nmt8I-abp I*

A Pstl/Sacl fragment containing nmt81-abpl+ was
obtained from a partial digest of pRep81-abpl+ and
inserted into pJK-148 vector. After linearization at the leul
locus with Eco47IIl, the linearized plasmid was trans-
formed into the Aabp1::ura4+ade6-M216 leul-32 ura4-D18
h- strain. Integration was confirmed by Southern blot
analysis.

Synthetic lethal genetic analysis

Exponentially growing cultures for each mutant analyzed
were prepared. All cultures were adjusted to 107 cells/ml
and a total of 6 serial 5-fold dilutions were spotted on YE
plates and incubated at temperatures ranging from 25-
36°C for 4 days.

Hydroxyurea sensitivity

Cultures of each strain (wt, Acds1 and Aabp1) were grown
to an ODg4s = 0.2 (log phase) and 5-fold serial dilutions
of each strain were spot plated on YE plates containing 0,
2.5, 5 and 10 mM hydroxyurea. The first spot represents
107 cells plated. Plates were incubated at 32°C for 5 days.
Assessment of viability for wt, Acds1and Aabp1 at each HU
concentration was performed.

Cell synchronization experiments

To arrest cells in G1, cdc10-129 and cdc10-129 Aabp1 cells
were incubated at 36°C for four hours. Cells were then
returned to the permissive temperature of 25°C, collected
at the indicated times and fixed for flow cytometry analy-
sis (FACS). To block cells in S phase, wt and Aabp1 cells
were incubated in 15 mM HU for 4 hours at 32°C. Cells
were then pelleted, washed 3x with YE media to remove
traces of hydroxyurea, and resuspended in YE media. Cells
were then collected at the indicated times and prepared
for FACS analysis.

Flow cytometry

Cells were fixed in 70% ethanol, washed and resuspended
in 50 mM sodium citrate, treated with 100 pug/ml RNase,
followed by staining with 2 uM Sytox Green (Molecular
Probes) or 0.5 ug/ml propidium iodine. Before process-
ing, cells were sonicated, and DNA content was assayed
using a Becton Dickson FacsSCAN.
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