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Abstract

Stem cells have recently attracted significant attention largely due to their potential therapeutic
properties, but also because of their role in tumorigenesis and their resemblance, in many aspects,
to cancerous cells. Understanding how stem cells are regulated, namely with respect to the control
of their proliferation and differentiation within a functional organism, is thus primordial to safely
profit from their therapeutic benefits. Here, we review recent advances in the understanding of
germline stem cell proliferation control by factors that respond to the nutritional status and/or
insulin signaling, through studies performed in C. elegans and Drosophila. Together, these data
uncover some shared fundamental features that underlie the central control of cellular proliferation
within a target stem cell population in an organism. These features may indeed be conserved in

higher organisms and may apply to various other stem cell populations.

Background

The development of multi-cellular organisms requires a
continual source of differentiating cells to populate fields
within diverse tissues. Similarly, following tissue damage,
the replacement of lost cells often relies on the prolifera-
tion and subsequent differentiation of a population of
pluripotent "stem" cells set aside from other cells within
this tissue. In order to maintain their population, stem
cells must self-renew at each division, which can be
accomplished through asymmetric division to generate
two different daughter cells - one that resembles the
mother (a stem cell), and one that is committed to
another differentiated fate. Alternatively the division can
result in the formation of two identical daughter cells that
are indistinguishable from the mother. This symmetric
mode of division enables stem cells to increase in num-
bers during development, or following an injury [1].

Stem cells occupy a specific microenvironment which is
referred to as the niche, wherein they receive the extrinsic
signals required to maintain their undifferentiated iden-
tity. These signals differ among the various stem cell types,
but their role in maintaining the stem cell population is
critical, and their expression defines the boundaries of the
niche [2].

The study of the regulation of the C. elegans, Drosophila,
and mouse Germline Stem Cell (GSC) populations during
development and adulthood has revealed a number of
important molecular mechanisms that govern the interac-
tions between stem cells and their niche [3]. Briefly, a
short-range signal(s) generated by the niche cell(s) - the
Distal Tip Cell (DTC) in C. elegans, the cap and hub cells
in the Drosophila ovary and testis, respectively, and the Ser-
toli cells in the mouse testis — prevents nearby GSCs from
differentiating. In fact, these extrinsic cues activate a
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molecular cascade within the GSCs that targets the activity
of specific transcription factors and/or translational regu-
lators, which in turn alter gene expression to specify and
maintain GSC identity.

Under optimal growth conditions, GSCs divide continu-
ously throughout development and adulthood, initially
to increase in numbers and later to provide a constant
supply of differentiating germ cells. Under these optimal
circumstances, the rate at which GSCs divide appears to be
primarily dependent on intrinsic factors and on their
interaction with the niche cell(s). In fact, signaling from
the niche cell(s) not only physically determines the size of
the GSC population, but also affects the rate at which
GSCs proliferate, depending on the level at which it regu-
lates GSC identity [4-6]. The limiting intrinsic factors are
very poorly defined, but recent advances suggest that the
timing of stem cell division may be regulated by a micro-
RNA-dependent down regulation of Dacapo, a p21/p27
Cyclin-Dependent Kinase (CDK) inhibitor, thereby relax-
ing controls on the G,/S transition [7]. That is, Drosophila
GSCs lacking dicer-1 (dcr-1) function, the loss of which
completely impairs microRNA processing, are delayed at
the G;/S boundary, and this delay is dependent on
Dacapo [8,9].

When environmental conditions are unfavorable to
growth however, the rate at which organisms develop is
delayed, owing to a general slowing in cell growth and
division. This likely occurs as a result of a direct lack of
critical nutrient resources required for macromolecular
synthesis, but also through nutrient sensing and the active
inhibition of energy consuming pathways, such as those
involved in cell growth and division, presumably to con-
serve limiting resources. Several intracellular and intercel-
lular molecular cascades play a role in this active response
to adverse growth conditions, including the insulin,
AMPK, and TOR signaling pathways [10-13]. It is there-
fore likely that the GSCs of starved animals follow similar
rules as the soma, and their growth/division rate may thus
be delayed under such conditions.

The GSCs contain the information that will be transmitted
from generation to generation, therefore their genetic
integrity is critical and must be guarded from deleterious
mutations. The precious treasure that they store is thus
subject to additional protective measures that are not uti-
lized in somatic cells. Consistent with this, it is now
widely accepted that transposon silencing mechanisms
operate much more efficiently in the germ line compared
to the soma to prevent deleterious effects caused by aber-
rant insertion and/or expression of sequences derived
from these elements [14]. In addition to transposition
events however, many other sub-optimal circumstances
may increase mutational susceptibility, including nutrient
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deprivation [15]. It is therefore expected that under these
conditions, GSCs become quiescent in order to minimize
the risk of acquiring deleterious mutations due to driving
cell division during periods of insufficient energy or
resources to appropriately complete the cell cycle.

Nutrient stress blocks stem cell divisions

In most organisms examined to date, GSC divisions are
delayed when nutritional resources become limiting. For
example, sterols are essential for growth [16], but C. ele-
gans cannot synthesize them de novo, and instead must
metabolize exogenous sterols to meet this requirement.
When cholesterol levels are insufficient, the brood size of
C. elegans is markedly reduced due to a defect in germline
proliferation and differentiation [17]. This correlates with
a study that clearly demonstrated that female Drosophila
GSCs and their progeny uniformly adjust their prolifera-
tion rates in response to nutrition, such that no particular
developmental stage accumulates in the germarium of
poorly fed animals [18]. Therefore, GSCs must sense
nutrient quality and/or abundance, or alternatively they
must be capable of reading the general metabolic status of
the organism, to adjust their division rate accordingly.

Insulin signaling regulates the rate of GSC
divisions

The general metabolic status of multi-cellular organisms is
monitored predominantly by insulin-like signaling [13].
In C. elegans, encountering poor environmental condi-
tions during early post-embryonic life, including limited
nutritional resources and high population density, trig-
gers the entry into an alternative developmentally-sus-
pended stage called dauer, which is specialized for long-
term survival and dispersal. To understand how this
developmental switch is regulated, large-scale screens
have been carried out to isolate mutants that constitu-
tively enter dauer, or that are unable to execute this devel-
opmental switch [19,20]. Several highly conserved
components of insulin signaling have been identified
from these initial screens. That is, disrupting the function
of genes encoding positive components of the C. elegans
insulin-like cascade, such as the insulin-like growth factor
(IGF) receptor ortholog (daf-2) [21], the catalytic subunit
of PtdIns3-kinase (age-1) [22], the PtdInsP3-dependent
kinase (pdk-1) [23], or Akt/PKB (akt-1/2) [24] results in a
down regulation of the metabolic rate and induces consti-
tutive dauer arrest. In contrast, altering the function of
components that act antagonistically to the insulin-like
signaling cascade, including PtdIns3-phosphatase PTEN
(daf-18) [25], or the FOXO-like forkhead transcription
factor (daf-16) [26,27] disrupts the ability of animals to
enter dauer (Figure 1).

In animals in which the level of insulin-like signaling is

severely reduced, GSC divisions progressively slow down
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Linking the insulin-like, AMPK and TOR signaling pathways upstream of GSC quiescence. Upon insulin-like recep-
tor activation, PtdInsP3 kinase (PI3K) phosphorylates PtdinsP,. This activity is counteracted by PtdInsP3 phosphatase (DAF-18/
PTEN). PtdInsP; activates, in a PDK-|/PDK-dependent manner AKT/Akt, which phosphorylates and thereby prevents the
nuclear translocation of the DAF-16/FOXO transcription factor. In Drosophila and mammals, Akt and AMPK act antagonistically
to regulate TOR signaling through inhibitory and activating phosphorylation of TSC2, respectively. Arrows indicate activation;

bars inhibition. Based on [I 1, 59, 85, 87, 88].

during preparation for dauer [28], similar to what occurs
in somatic tissues, to finally completely arrest such that no
cell divisions occur during the dauer diapause. Similarly,
reducing insulin-like signaling later in life, following the
window of competence to execute dauer development has
been bypassed, also inhibits gamete production quite dra-
matically [29]. Therefore, the level of insulin-like signal-
ing somehow impinges, directly or indirectly, on the rate
at which GSCs divide.

In Drosophila, insulin-like signaling also drastically
impinges on GSC division rate. In fact, while a homolog
of the vertebrate Insulin Receptor Substrate (IRS) 1-4,
CHICO, is required for female fertility [30], reduced activ-
ity of the Drosophila insulin receptor (dinr) specifically in
the GSCs strongly attenuates their rate of division [31].
Thus, the degree of activation of the insulin-like signaling
pathway, like the nutritional status, regulates the division
rate of GSCs. Furthermore, GSCs require dinr and chico to

Page 3 of 9

(page number not for citation purposes)



Cell Division 2006, 1:29

properly adjust their division rate with nutrient availabil-
ity [18,31]. Therefore, nutrient depletion must impinge
on GSC divisions by reducing insulin-like signaling
within the GSCs, thereby inhibiting their proliferation
under these sub-optimal growth conditions.

Nutrients regulate GSC division rate through an
insulin-dependent neuro-endocrine signal

In mammals, the insulin receptor is activated following its
association with an insulin molecule secreted by pancre-
atic B-cells in response to high blood sugar in order to
inhibit hepatic glucose production, while also stimulating
glucose uptake in muscles and adipose tissues [13]. The
insulin and insulin receptor superfamilies comprise sev-
eral members, including the insulin-like growth factors
(IGFs) and their receptors (IGFRs) among others, all of
which carry diverse functions [32]. In lower organisms
such as Drosophila and C. elegans however, there are sev-
eral insulin-like peptides that are mainly expressed in neu-
rons and either positively or negatively regulate the
activity of a unique insulin/IGF-1 receptor homolog
[33,34].

In Drosophila, there are seven insulin-like peptide (dilp1-7)
genes, all of which activate the single IGFR homolog
(dinr) and thereby promote growth [33,35]. In adult
females, DILPs are mainly expressed in two clusters of
neurosecretory cells in the brain [36], and the expression
of some of these is modulated by nutrient availability
[35]. Either the ablation of these DILP-producing cells or
the prevention of DILP secretion through impairment of
the Drosophila o-endosulfine (dendos) gene reproduce the
delay in GSC proliferation caused by the removal of the
dinr gene specifically from the germ line [31,37].
Together, these results suggest that the nutritional status
regulates DILP expression in a collection of discrete head
neurons, and that these DILPs are secreted, transported,
and bind directly to DINR on the surface of the GSCs to
control their division rate in the Drosophila female.

In C. elegans, the pathway works somewhat differently.
There are 38 predicted insulin-like peptides that are also
predominantly expressed in the nervous system, some of
which antagonize and some of which activate the unique
insulin-like receptor homolog [34,38,39]. Experiments
designed to restore the function of the insulin-like recep-
tor (daf-2), PtdIns3-kinase (age-1), or of the downstream
target of the pathway, a FOXO-like forkhead transcription
factor (daf-16), in specific tissues have demonstrated that
daf-2 and age-1 activity in neurons is sufficient to sustain
reproductive development in daf-2 or age-1 mutant ani-
mals, respectively [40-42]. Furthermore, restoring daf-16
function specifically in the neurons of daf-16; daf-2 double
mutants, is sufficient to induce dauer development and
concomitantly block GSC divisions [[43], our unpub-
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lished data]. It remains unclear, however, whether neuro-
nal daf-16 activity is similarly sufficient to couple GSC
proliferation with reduced insulin-like signaling levels in
a post-dauer situation. Furthermore, the nature of this
insulin-dependent neuro-endocrine signal that would
stimulate GSC divisions remains elusive. Part of a reason-
able hypothesis may be that elevated neuronal insulin-
like signaling levels influence the production of a sterol-
derived hormone by the cytochrome P450 DAF-9 in the
hypodermis and/or in a pair of neuroendocrine cells. This
hormone may in turn affect a nuclear hormone receptor
called DAF-12, thereby promoting reproductive develop-
ment [44-47]. However, other factors must be implicated
since daf-2; daf-12(0) double mutants, despite their ina-
bility to execute dauer and completely block GSC divi-
sions under reduced insulin-like signaling, grow into
sterile adults [46,48,49], indicating that insulin-like sign-
aling levels regulate GSC divisions and germline develop-
ment, at least in part, through a daf-12 independent
mechanism.

Insulin levels do not seem to affect niche-GSC
signaling

A puzzling question remains whether this insulin-like-reg-
ulated signal also affects the manner with which the niche
communicates with the GSCs. In C. elegans and Drosophila
the niche is considered to actively promote proliferation
of the GSCs, while also inhibiting their differentiation [4-
6,50]. But during sub-optimal growth conditions it would
seem counterintuitive that the niche signal(s) would con-
tinue to stimulate proliferation of the GSCs while a sec-
ond signal would be required to inhibit them from
dividing in response to these environmental cues. In C.
elegans, a Delta/Serrate-like ligand called LAG-2, expressed
by the niche cell (DTC), activates a Notch receptor (GLP-
1) in the GSCs, thereby promoting their proliferation, as
opposed to their differentiation [50]. This cascade does
not seem to be affected by changes in insulin-like signal-
ing however, since both the ligand and the receptor con-
tinue to be expressed when insulin-like signaling is
reduced and GSCs become quiescent during dauer devel-
opment [28]. However, it is possible to reconcile these
observations if the niche signal(s) in fact does not directly
promote proliferation, but rather specifies GSC identity,
the fate of which is more prone to proliferation. It seems
logical that GSC identity must be maintained even when
these cells are not actively dividing.

Ptdins3-phosphatase PTEN regulates GSC
divisions in a FOXO-independent manner

The PtdIns3-phosphatase PTEN acts downstream of the
insulin-like receptor in every organism examined thus far,
counteracting the activity of PtdIns3-kinase. Loss of PTEN
activity, therefore, results in increased PtdInsP; levels, and
these increased levels are sufficient to completely suppress
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all the phenotypes of insulin-like receptor mutants in C.
elegans and Drosophila [51,52]. These results suggest that
the effects observed due to variations in the activity of the
insulin-like receptor are mediated through its influence
on the abundance of PtdInsP;. Elevated PtdInsP; levels
activate a complex that includes Akt/PKB in a PDK1-
dependent manner, which in turn phosphorylates and
thereby inhibits a FOXO forkhead transcription factor
from entering the nucleus (Figure 1) [53]. Although exper-
iments performed in mammalian cells identified other
Akt/PKB phosphorylation targets, including TSC2 in the
mTOR growth pathway [10,54,55], until very recently it
was believed that the activity of the C. elegans FOXO
homolog daf-16 fully mediated the effects of reduced
insulin-like receptor (daf-2) activity, again because its
removal completely suppresses the effects of daf-2 muta-
tions on the development of this multi-cellular organism
[27,39]. However compelling evidence now demonstrates
that some daf-18/PTEN-dependent; daf-16/FOXO-inde-
pendent regulation of GSC divisions occurs in C. elegans.

C. elegans hatchlings do not begin post-embryonic devel-
opment and their two initial GSCs do not proliferate until
the animals start feeding [56]. This quiescence of the GSCs
in starved L1 larvae requires the activity of daf-18/PTEN,
and the inappropriate divisions that occur in daf-18
mutants are suppressed by mutations in age-1/PtdIns3-
kinase or akt-1/Akt/PKB. In contrast, a daf-16/FOXO null
mutation does not bypass the food requirement for GSC
proliferation in starved L1 larvae [57]. Similarly, while
daf-18/PTEN is required in all circumstances to appropri-
ately down regulate the proliferation of the GSCs during
dauer development, daf-16/FOXO is almost fully dispen-
sable under certain conditions [28]. Moreover, both the
inhibition of the proliferation of normal GSCs in growing
larvae and of the tumorous GSCs in adult gld-1 mutants
provoked by reduced insulin-like receptor activity is not
completely suppressed by daf-16/FOXO null mutations
[28,58]. Together, these results suggest that reduced activ-
ity of the insulin-like receptor negatively regulates the rate
at which GSCs divide, at least in part, through FOXO-
independent PTEN and/or Akt/PKB targets.

Mysterious G,/M arrest of low insulin-induced
quiescent GSCs

In mammalian cell culture, insulin signaling affects the
cell cycle machinery largely by regulating Akt/PKB activity,
which is required for progression through both G,/S and
G,/M checkpoints [59]. As previously mentioned, the tim-
ing of adult stem cell divisions appears to be mediated by
two G, /S regulators: p21 and p27 [7], while a large part of
the Akt/PKB-dependent G,/S regulation is believed to
occur through the regulation of these two CDK inhibitors
[59]. It seems plausible therefore that GSC quiescence in
organisms under nutrient stress occurs at the G,/S check-
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point through the inhibition of Akt/PKB-dependent p21/
p27 down regulation. Consistent with this, RNAi deple-
tion of a C. elegans p21/p27 homolog (cki-1) induces GSC
hyperproliferation during dauer formation [60], but not
during early reproductive development, when nutrients
are not limiting [61], implicating it in GSC division con-
trol specifically during unfavorable growth conditions.
However, observations suggest that GSCs do not arrest in
G,, but rather at the G,/M checkpoint in starved/insulin-
like compromised C. elegans larvae. Namely, the quiescent
GSCs of dauer larvae have twice the DNA content of g;
arrested somatic cells [28]. Also, even when both p21/p27
CDK inhibitor homologs (cki-1 and cki-2) are depleted by
RNAI in starved L1 larvae, their GSCs do not divide [62].
Moreover, the GSCs of starved L1 animals have replicated
DNA content with condensed chromosomes and dupli-
cated centrosomes; centrosome duplication being specific
to S-phase [57]. Together, these data indicate that the
insulin-regulated quiescence of the GSCs occurs at the G,/
M checkpoint, at least in C. elegans, although G,-specific
CDK inhibitors may contribute to the deceleration of GSC
divisions associated with environmental stress.

It has been suggested that this surprising result may reflect
differences in the mechanisms of cell cycle regulation
when the cellular response is coordinated at the organis-
mal level, as opposed to within individual cells [63]. The
relevance or significance of this developmentally regu-
lated G,/M-arrest of GSCs in response to nutrient deple-
tion however remains unclear. Interestingly, mammalian
Embryonic Stem (ES) cells lack a G;checkpoint and
instead accumulate in S and G, phases after irradiation, at
least in part, as a result of compromised Chk2 (a central
G, checkpoint mediator) function. This difference
between somatic and ES cells has been proposed to con-
tribute to their reduced mutational frequencies, perhaps
through favoring the apoptosis of mutant cells over their
arrest and repair [64,65]. Consistent with this, a large pro-
portion of ES cells undergo apoptosis after treatment with
antimetabolite or genotoxic agents [64]. It is therefore
possible that the G, arrest of GSCs in starved animals
favors the apoptotic elimination of those cells that have
accumulated mutations during the insult over their repair,
thereby preventing their transmission to the next genera-
tion.

The LKB I/AMPK cascade links GSC division rate
with insulin levels

PTEN is an important tumor suppressor that is among the
most commonly mutated genes in most types of human
cancer. Also, germline PTEN mutations result in related,
dominantly inherited, cancer predisposing syndromes
[66]. The downstream targets of the insulin-regulated cas-
cade that couples GSC proliferation with nutritional sta-
tus are therefore of great interest, potentially representing
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novel mediators of PTEN signaling that contribute to its
tumor suppressive properties.

A forward genetic approach in C. elegans identified aak-2
as a downstream effector that links GSC proliferation rate
with insulin-like signaling levels [28]. The screening strat-
egy took advantage of the developmentally-regulated
establishment of the complete GSC quiescence associated
with dauer development, such that dauer animals arrest
with a characteristic gonad size. Like in daf-18/PTEN
mutants, the germ line of aak-2 mutant dauers is hyper-
plasic. aak-2 encodes a homolog of the 02 catalytic subu-
nit of a heterotrimeric complex called AMP-activated
protein Kinase (AMPK) in humans. AMPK is best charac-
terized as an intracellular "metabolic master switch" that
turns OFF energy consuming pathways and turns ON
alternative energy producing pathways in response to an
increase in the AMP:ATP ratio, to restore energy balance
[12]. RNAI depletion of the other catalytic (1) AMPK
subunit (aak-1) gives a phenotype that is similar to aak-
2(RNAI), while the inactivation of both subunits results in
significantly more pronounced germline hyperplasia,
indicating an additive function of the two catalytic AMPK
subunits [28].

In addition to being activated allosterically by AMP,
AMPK requires at least one key activating phosphoryla-
tion at a very conserved site to become fully catalytically
active [12]. The major AMPK-activating kinase was identi-
fied as LKB1/STK11 [67], a tumor suppressor that causes
cancer predisposition in humans [68,69]. As one might
predict, the inactivation of the C. elegans LKB1 homolog
(par-4) causes germline hyperplasia in dauer, with a sever-
ity similar to that of aak-1; aak-2 double mutants. Interest-
ingly, the requirement for aak-2 is cell autonomous,
suggesting that the LKB1-AMPK cascade functions within
the GSCs to regulate proliferation, likely in response to
the neuro-endocrine signal downstream of insulin-like
signaling [28]. This observation reveals the significance of
this LKB1-dependent AMPK phosphorylation in a devel-
oping animal, and suggests that the requirement for this
very highly conserved LKB1-AMPK cascade in insulin-
dependent regulation of GSC division rate may function
in other organisms, including humans.

Intensive biochemical studies, most of which were per-
formed in cultured cells, have identified a molecular cas-
cade that links both Akt/PKB and AMPK to the regulation
of the mTOR growth pathway. Briefly, Akt/PKB and AMPK
antagonistically regulate the activity of a TSC1-TSC2 com-
plex, another human tumor suppressor [70], through
direct phosphorylation of TSC2 [55,71-73], such that
when insulin signaling is elevated and the AMP:ATP ratio
is low, the TSC complex is antagonized by Akt/PKB, and is
not activated by AMPK. In turn, the TOR pathway is acti-
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vated, thereby promoting protein synthesis and cell
growth (Figure 1) [11,74]. Interestingly, mutations in the
C. elegans TOR ortholog (let-363) cause larvae to arrest
with an underdeveloped germ line, although the animals
do not resemble dauer larvae [75]. Furthermore, TOR sig-
naling is required for vitellogenesis and egg development
in response to nutritional signals resulting from blood
ingestion in female mosquitoes [76]. Given that the rate
at which vitellogenesis proceeds is tightly coupled to that
of GSC proliferation and DILP signaling in Drosophila
[31,35], it is likely that TOR signaling couples GSC divi-
sion rate with nutrient status in insects. To date, however,
no direct evidence suggests the involvement of TOR sign-
aling in insulin-dependent regulation of GSC division
rate, although based on the biochemical and cellular
interactions described above, it is tempting to speculate
that the insulin-Akt/PKB and LKB1-AMPK cascades
together target TOR activity to adjust the rate of GSC divi-
sions according to the nutritional status of the organism.

The mechanisms at work in unicellular models and tissue
culture do not always reflect the complexity associated
with development typical of multi-cellular organisms,
and it will become a major challenge to account for all the
details that remain unanswered, particularly in C. elegans.
First, as previously mentioned, unlike in Drosophila, insu-
lin-like receptor activity is not required within the worm
germ line to sustain the robust GSC proliferation associ-
ated with reproductive development [41,42]. This sug-
gests that neural insulin-like peptides do not directly
control the rate of GSC divisions in this organism and
imply a second, yet uncharacterized, neuro-endocrine sig-
nal. Furthermore, the phenotypical and molecular links
between insulin-like and TOR signaling still lack experi-
mental support in this organism. That is, no obvious
TSC1/2 ortholog has been clearly identified in C. elegans,
while there are clear phenotypic differences between the
effects of mutations in these different pathways on devel-
opment, despite several commonalities, including growth
arrest [74,75]. Perhaps the most puzzling finding is the G,
arrest of quiescent GSCs, which does not fit with the
widely accepted view that nutrient depletion and TOR sig-
naling affect G,/S progression. That is, in yeast and mam-
malian cells, treatment with rapamycin (an inhibitor of
TOR signaling) induces G, arrest [77-81]. It shall therefore
be a priority to determine whether this G, arrest is an
exception or a rule in GSC regulation through a more
detailed examination of higher organisms, and whether
TOR signaling could somehow participate in this process.
Finally, genetic evidence suggests the involvement of
additional, yet unidentified genes linking insulin-like sig-
naling to the regulation of GSC divisions [28], and their
characterization may provide new insights into this cas-
cade.
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LKB1 was originally identified as an essential component
of polarity establishment in the C. elegans zygote, and in
the Drosophila oocyte and epithelium [82,83]. Further-
more, the artificial activation of LKB1 in mammalian
intestinal epithelial cells upon overexpression of its cofac-
tor STRAD induces their polarization and blocks their
division in culture [84]. In fact, LKB1 was shown to phos-
phorylate and activate several AMPK-related kinases,
including PAR-1/MARK and SAD/BRSK, both of which
play important roles in polarity establishment during
development [82,83,85,86]. It is however unclear whether
LKB1 contributes to the regulation of GSC divisions by
insulin-like signaling levels through its effects on cell

polarity.

Conclusion

In summary, evidence from C. elegans and Drosophila sug-
gest that the general nutritional status of an organism, as
reflected by the level of insulin-like signaling, regulates
the production of a neuro-endocrine signal that is
received by the GSCs and which dictates their division
rate. This neuro-endocrine signal may target the insulin
receptor itself (Drosophila), PTEN, and/or the LKB1-AMPK
cascade (C. elegans) within the GSCs to link their prolifer-
ation rate with insulin-like signaling level, at least in part,
in a FOXO-independent manner (C. elegans). Under the
conditions where insulin-like signaling is low enough to
completely block GSC divisions, the cells arrest at the G,/
M checkpoint, although this has not been confirmed in
Drosophila. These features may underlie the nutrient based
regulation of cell divisions in several types of stem cell
populations, and their better definition will be an impor-
tant priority to understand the key mechanisms that con-
trol their proliferative capacity, both in vivo and in vitro,
and whether cell or planar polarity is involved.

Whether the nutritional, insulin-dependent control of
GSC proliferation rate somehow relies on microRNA-
mediated control mechanisms is another important ques-
tion that should be addressed. Although this model has
been proposed [7], the two pathways may act in a com-
pletely parallel manner, as it seems to be the case regard-
ing the interplay between the niche and the specification
of GSC identity. Namely, no evidence involves microR-
NAs in insulin-like or nutrient-dependent regulation of
GSC division rate. A possible reflection of this may how-
ever underlie the germline hyperplasia of cki-1(RNAi) C.
elegans dauer larvae, since this microRNA pathway is
believed to ultimately target a p21/p27 homolog.

Finally, GSCs share several features with most types of
cancer cells, including sustained proliferation, the rate of
which is sensitive to insulin signaling levels. Furthermore,
several related cancer-predisposing syndromes result
directly from germline mutations in central genes in the
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pathways that seem to couple GSC proliferation with
organismal insulin signaling levels, including PTEN and
LKB1. The identification of the downstream targets in this
cascade will not only provide potential new candidates for
cancer therapy, but may also uncover some rationale
underlying the different characteristics of each of the can-
cer-predisposing syndromes associated with mutations in
these genes.

In the light of this discussion, one interesting possibility
that may account for some of the tumor suppressive
effects of PTEN and LKB1 is their function in preventing
division specifically when cells are more likely to acquire
mutations, during cell cycle progression under nutrient
depletion. Such mutant cells would therefore be predicted
to have a higher mutational rate, and may therefore rap-
idly gain a stronger proliferative advantage, or other char-
acteristics that affect key steps toward tumorigenesis.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
P.N. wrote the review, which was edited by R.R.

Acknowledgements

We thank M. Zetka, M. Hebeisen, and ]. Ouellet for critically reading the
manuscript and their useful suggestions and comments. P.N. is supported
by an NSERC studentship. R.R. is a CIHR new investigator. Work from this
laboratory is supported by a research award from the Canadian Cancer
Society.

References

I. Morrison §J, Kimble J: Asymmetric and symmetric stem-cell
divisions in development and cancer. Nature 2006,
441(7097):1068-1074.

2. Scadden DT: The stem-cell niche as an entity of action. Nature
2006, 441(7097):1075-1079.

3. Wong MD, Jin Z, Xie T: Molecular mechanisms of germline
stem cell regulation. Annu Rev Genet 2005, 39:173-195.

4, Cox DN, Chao A, Lin H: piwi encodes a nucleoplasmic factor
whose activity modulates the number and division rate of
germline stem cells. Development 2000, 127(3):503-514.

5. Maciejowski J, Ugel N, Mishra B, Isopi M, Hubbard EJ: Quantitative
analysis of germline mitosis in adult C. elegans. Dev Biol 2006,
292(1):142-151.

6.  Pepper AS, Lo TW, Killian D), Hall DH, Hubbard EJ: The establish-
ment of Caenorhabditis elegans germline pattern is control-
led by overlapping proximal and distal somatic gonad signals.
Dev Biol 2003, 259(2):336-350.

7.  Shcherbata HR, Hatfield S, Ward EJ, Reynolds S, Fischer KA, Ruohola-
Baker H: The MicroRNA pathway plays a regulatory role in
stem cell division. Cell Cycle 2006, 5(2):172-175.

8.  Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klat-
tenhoff C, Theurkauf WE, Zamore PD: Normal microRNA mat-
uration and germ-line stem cell maintenance requires
Loquacious, a double-stranded RNA-binding domain pro-
tein. PLoS Biol 2005, 3(7):e236.

9.  Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RWV,
Ruohola-Baker H: Stem cell division is regulated by the micro-
RNA pathway. Nature 2005, 435(7044):974-978.

10. Carrera AC: TOR signaling in mammals. | Cell Sci 2004, 117(Pt
20):4615-4616.

Page 7 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16810241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16810241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16810242
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16285857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16285857
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10631171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10631171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10631171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16480707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16480707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12871705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16357538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16357538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15918770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15918770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15918770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15944714
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15371520

Cell Division 2006, 1:29

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Hardie DG: New roles for the LKBI --> AMPK pathway. Curr
Opin Cell Biol 2005, 17(2):167-173.

Hardie DG, Carling D, Carlson M: The AMP-activated/SNFI pro-
tein kinase subfamily: metabolic sensors of the eukaryotic
cell? Annu Rev Biochem 1998, 67:821-855.

Saltiel AR, Kahn CR: Insulin signalling and the regulation of glu-
cose and lipid metabolism. Nature 2001, 414(6865):799-806.
Sijen T, Plasterk RH: Transposon silencing in the Caenorhabdi-
tis elegans germ line by natural RNAi. Nature 2003,
426(6964):310-314.

Marini A, Matmati N, Morpurgo G: Starvation in yeast increases
non-adaptive mutation. Curr Genet 1999, 35(2):77-81.

Lozano R, Lusby WR, Chitwood D), Thompson M, Svoboda JA: Inhi-
bition of C28 and C29 phytosterol metabolism by N,N-
dimethyldodecanamine in the nematode Caenorhabditis
elegans. Lipids 1985, 20(3):158-166.

Shim YH, Chun JH, Lee EY, Paik YK: Role of cholesterol in germ-
line development of Caenorhabditis elegans. Mol Reprod Dev
2002, 61(3):358-366.

Drummond-Barbosa D, Spradling AC: Stem cells and their prog-
eny respond to nutritional changes during Drosophila oogen-
esis. Dev Biol 2001, 23 1(1):265-278.

Albert PS, Riddle DL: Mutants of Caenorhabditis elegans that
form dauer-like larvae. Dev Biol 1988, 126(2):270-293.

Riddle DL, Swanson MM, Albert PS: Interacting genes in nema-
tode dauer larva formation. Nature 1981, 290(5808):668-67 1.
Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G: daf-2, an insulin
receptor-like gene that regulates longevity and diapause in
Caenorhabditis elegans. Science 1997, 277(5328):942-946.
Morris JZ, Tissenbaum HA, Ruvkun G: A phosphatidylinositol-3-
OH kinase family member regulating longevity and diapause
in Caenorhabditis elegans. Nature 1996, 382(6591):536-539.
Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G: A PDKI
homolog is necessary and sufficient to transduce AGE-1 PI3
kinase signals that regulate diapause in Caenorhabditis ele-
gans. Genes Dev 1999, 13(11):1438-1452.

Paradis S, Ruvkun G: Caenorhabditis elegans Akt/PKB trans-
duces insulin receptor-like signals from AGE-1 PI3 kinase to
the DAF-16 transcription factor. Genes Dev 1998,
12(16):2488-2498.

Ogg S, Ruvkun G: The C. elegans PTEN homolog, DAF-18, acts
in the insulin receptor-like metabolic signaling pathway. Mol
Cell 1998, 2(6):887-893.

Lin K, Dorman JB, Rodan A, Kenyon C: daf-16: An HNF-3/fork-
head family member that can function to double the life-
span of Caenorhabditis elegans. Science 1997,
278(5341):1319-1322.

Ogg S, Paradis S, Gottlieb S, Patterson Gl, Lee L, Tissenbaum HA,
Ruvkun G: The Fork head transcription factor DAF-16 trans-
duces insulin-like metabolic and longevity signals in C. ele-
gans. Nature 1997, 389(6654):994-999.

Narbonne P, Roy R: Inhibition of germline proliferation during
C. elegans dauer development requires PTEN, LKBI and
AMPK signalling. Development 2006, 133(4):611-619.

Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML,
Larsen PL, Riddle DL: Two pleiotropic classes of daf-2 mutation
affect larval arrest, adult behavior, reproduction and longev-
ity in Caenorhabditis elegans. Genetics 1998, 150(1):129-155.
Bohni R, Riesgo-Escovar |, Oldham S, Brogiolo W, Stocker H, And-
russ BF, Beckingham K, Hafen E: Autonomous control of cell and
organ size by CHICO, a Drosophila homolog of vertebrate
IRS1-4. Cell 1999, 97(7):865-875.

LaFever L, Drummond-Barbosa D: Direct control of germline
stem cell division and cyst growth by neural insulin in Dro-
sophila. Science 2005, 309(5737):1071-1073.

Lu C, Lam HN, Menon RK: New members of the insulin family:
regulators of metabolism, growth and now. reproduction.
Pediatr Res 2005, 57(5 Pt 2):70R-73R.

Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E: An
evolutionarily conserved function of the Drosophila insulin
receptor and insulin-like peptides in growth control. Curr Biol
2001, 11(4):213-221.

Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buch-
man AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, et al.: Reg-
ulation of DAF-2 receptor signaling by human insulin and ins-

35.

36.
37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51,

52.

53.

54.
55.

56.

http://www.celldiv.com/content/1/1/29

I, a member of the unusually large and diverse C. elegans
insulin gene family. Genes Dev 2001, 15(6):672-686.

lkeya T, Galic M, Belawat P, Nairz K, Hafen E: Nutrient-dependent
expression of insulin-like peptides from neuroendocrine cells
in the CNS contributes to growth regulation in Drosophila.
Curr Biol 2002, 12(15):1293-1300.

Cao C, Brown MR: Localization of an insulin-like peptide in
brains of two Hies. Cell Tissue Res 2001, 304(2):317-321.
Drummond-Barbosa D, Spradling AC: Alpha-endosulfine, a
potential regulator of insulin secretion, is required for adult
tissue growth control in Drosophila. Dev Biol 2004,
266(2):310-321.

Kawano T, Ito Y, Ishiguro M, Takuwa K, Nakajima T, Kimura Y:
Molecular cloning and characterization of a new insulin/IGF-
like peptide of the nematode Caenorhabditis elegans. Bio-
chem Biophys Res Commun 2000, 273(2):431-436.

Li W, Kennedy SG, Ruvkun G: daf-28 encodes a C. elegans insu-
lin superfamily member that is regulated by environmental
cues and acts in the DAF-2 signaling pathway. Genes Dev 2003,
17(7):844-858.

Apfeld ], Kenyon C: Cell nonautonomy of C. elegans daf-2 func-
tion in the regulation of diapause and life span. Cell 1998,
95(2):199-210.

Iser WB, Gami MS, Minaxi S, Wolkow CA: Insulin signaling in
Caenorhabditis elegans regulates both endocrine-like and
cell-autonomous outputs. Devel Biol 2006 in press.

Wolkow CA, Kimura KD, Lee MS, Ruvkun G: Regulation of C. ele-
gans life-span by insulinlike signaling in the nervous system.
Science 2000, 290(5489):147-150.

Libina N, Berman JR, Kenyon C: Tissue-specific activities of C.
elegans DAF-16 in the regulation of lifespan. Cell 2003,
115(4):489-502.

Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL: daf-12
encodes a nuclear receptor that regulates the dauer dia-
pause and developmental age in C. elegans. Genes Dev 2000,
14(12):1512-1527.

Mak HY, Ruvkun G: Intercellular signaling of reproductive
development by the C. elegans DAF-9 cytochrome P450.
Development 2004, 131(8):1777-1786.

Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-
Powell K, Xu HE, Auchus RJ, Antebi A, et al.: Identification of lig-
ands for DAF-12 that govern dauer formation and reproduc-
tion in C. elegans. Cell 2006, 124(6):1209-1223.

Ohkura K, Suzuki N, Ishihara T, Katsura I: SDF-9, a protein tyro-
sine phosphatase-like molecule, regulates the L3/dauer
developmental decision through hormonal signaling in C.
elegans. Development 2003, 130(14):3237-3248.

Larsen PL, Albert PS, Riddle DL: Genes that regulate both devel-
opment and longevity in Caenorhabditis elegans. Genetics
1995, 139(4):1567-1583.

Vowels JJ, Thomas JH: Genetic analysis of chemosensory con-
trol of dauer formation in Caenorhabditis elegans. Genetics
1992, 130(1):105-123.

Kimble J, Crittenden S: Germline proliferation and its control.
Wormbook 2005 [http://www.wormbook.org]. The C. elegans
Research Community

Gil EB, Malone Link E, Liu LX, Johnson CD, Lees JA: Regulation of
the insulin-like developmental pathway of Caenorhabditis
elegans by a homolog of the PTEN tumor suppressor gene.
Proc Natl Acad Sci USA 1999, 96(6):2925-2930.

Oldham S, Stocker H, Laffargue M, Wittwer F, Wymann M, Hafen E:
The Drosophila insulin/IGF receptor controls growth and
size by modulating PtdInsP(3) levels. Development 2002,
129(17):4103-4109.

Lee RY, Hench J, Ruvkun G: Regulation of C. elegans DAF-16
and its human ortholog FKHRLI by the daf-2 insulin-like sig-
naling pathway. Curr Biol 2001, 11(24):1950-1957.

Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in
three Akts. Genes Dev 1999, 13(22):2905-2927.

Inoki K, Li Y, Zhu T, Wu J, Guan KL: TSC2 is phosphorylated and
inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol
2002, 4(9):648-657.

Subramaniam K, Seydoux G: nos-1 and nos-2, two genes related
to Drosophila nanos, regulate primordial germ cell develop-
ment and survival in Caenorhabditis elegans. Development
1999, 126(21):4861-4871.

Page 8 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15780593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11742412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10079325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10079325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3990524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3990524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3990524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11835581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11835581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11180967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11180967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11180967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3350212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3350212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7219552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7219552
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9252323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9252323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9252323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8700226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8700226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8700226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10364160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9716402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9716402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9716402
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9885576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9885576
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9360933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9360933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9360933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9353126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9353126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9353126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16407400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9725835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9725835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9725835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10399915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10399915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10399915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16099985
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15817502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15817502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11250149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11250149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11250149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11274053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12176357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11396725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11396725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14738879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14738879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14738879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10873623
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12654727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9790527
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11021802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11021802
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14622602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14622602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10859169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10859169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10859169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15084462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16529801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16529801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16529801
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12783794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7789761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7789761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1732156
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1732156
http://www.wormbook.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10077613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12163412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12163412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12163412
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11747821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10579998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10579998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12172553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12172553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10518502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10518502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10518502

Cell Division 2006, 1:29

57.

58.

59.

60.

6l.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

Fukuyama M, Rougvie AE, Rothman JH: C. elegans DAF-18/PTEN
mediates nutrient-dependent arrest of cell cycle and growth
in the germline. Curr Biol 2006, 16(8):773-779.

Pinkston M, Garigan D, Hansen M, Kenyon C: Mutations that
increase the life span of C. elegans inhibit tumor growth. Sci-
ence 2006, 313(5789):971-975.

Brazil DP, Yang ZZ, Hemmings BA: Advances in protein kinase B
signalling: AKTion on multiple fronts. Trends Biochem Sci 2004,
29(5):233-242.

Hong Y, Roy R, Ambros V: Developmental regulation of a cyc-
lin-dependent kinase inhibitor controls postembryonic cell
cycle progression in Caenorhabditis elegans. Development
1998, 125(18):3585-3597.

Kostic |, Li S, Roy R: cki-1 links cell division and cell fate acqui-
sition in the C. elegans somatic gonad. Dev Biol 2003,
263(2):242-252.

Fukuyama M, Gendreau SB, Deny WB, Rothman |H: Essential
embryonic roles of the CKI-1 cyclin-dependent kinase inhib-
itor in cell-cycle exit and morphogenesis in C elegans. Dev Biol
2003, 260(1):273-286.

Chamberlin  HM: Faculty of 1000 Biology. [htep://
www.f1000biology.com/article/id/1030638/evaluation]. | Feb 2006
Aladjem M, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R,
Wahl GM: ES cells do not activate p53-dependent stress
responses and undergo p53-independent apoptosis in
response to DNA damage. Curr Biol 1998, 8(3):145-155.

Hong Y, Cervantes RB, Tichy E, Tischfield JA, Stambrook PJ: Protect-
ing genomic integrity in somatic cells and embryonic stem
cells. Mutat Res 2006.

Di Cristofano A, Pandolfi PP: The multiple roles of PTEN in
tumor suppression. Cell 2000, 100(4):387-390.

Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neu-
mann D, Schlattner U, Wallimann T, Carlson M, Carling D: LKBI is
the upstream kinase in the AMP-activated protein kinase
cascade. Curr Biol 2003, 13(22):2004-2008.

Hemminki A, Markie D, Tomlinson |, Avizienyte E, Roth S, Loukola A,
Bignell G, Warren W, Aminoff M, Hoglund P, et al.: A serine/threo-
nine kinase gene defective in Peutz-Jeghers syndrome.
Nature 1998, 391(6663):184-187.

Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O,
Back W, Zimmer M: Peutz-Jeghers syndrome is caused by
mutations in a novel serine threonine kinase. Nat Genet 1998,
18(1):38-43.

Young ], Povey S: The genetic basis of tuberous sclerosis. Mol
Med Today 1998, 4(7):313-319.

Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy
response to control cell growth and survival. Cell 2003,
115(5):577-590.

Manning BD, Tee AR, Logsdon MN, Blenis ], Cantley LC: Identifica-
tion of the tuberous sclerosis complex-2 tumor suppressor
gene product tuberin as a target of the phosphoinositide 3-
kinase/akt pathway. Mol Cell 2002, 10(1):151-162.

Shaw R|, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho
RA, Cantley LC: The LKBI| tumor suppressor negatively regu-
lates mTOR signaling. Cancer Cell 2004, 6(1):91-99.

Avruch |, Lin Y, Long X, Murthy S, Ortiz-Vega S: Recent advances
in the regulation of the TOR pathway by insulin and nutri-
ents. Curr Opin Clin Nutr Metab Care 2005, 8(1):67-72.

Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch |: TOR defi-
ciency in C. elegans causes developmental arrest and intesti-
nal atrophy by inhibition of mMRNA translation. Curr Biol 2002,
12(17):1448-1461.

Hansen IA, Attardo GM, Roy SG, Raikhel AS: Target of rapamycin-
dependent activation of Sé6 kinase is a central step in the
transduction of nutritional signals during egg development
in a mosquito. | Biol Chem 2005, 280(21):20565-20572.

Barbet NC, Schneider U, Helliwell SB, Stansfield |, Tuite MF, Hall MN:
TOR controls translation initiation and early G| progression
in yeast. Mol Biol Cell 1996, 7(1):25-42.

Chan S: Targeting the mammalian target of rapamycin
(mTOR): a new approach to treating cancer. Br | Cancer 2004,
91(8):1420-1424.

Heitman ], Movva NR, Hall MN: Targets for cell cycle arrest by
the immunosuppressant rapamycin in yeast. Science 1991,
253(5022):905-909.

80.

8l.

82.

83.

84.

85.
86.

87.

88.

http://www.celldiv.com/content/1/1/29

Metcalfe SM, Canman CE, Milner J, Morris RE, Goldman S, Kastan MB:
Rapamycin and p53 act on different pathways to induce Gl
arrest in mammalian cells. Oncogene 1997, 15(14):1635-1642.
Zaragoza D, Ghavidel A, Heitman ], Schultz MC: Rapamycin
induces the GO program of transcriptional repression in
yeast by interfering with the TOR signaling pathway. Mol Cell
Biol 1998, 18(8):4463-4470.

Martin SG, St Johnston D: A role for Drosophila LKBI in ante-
rior-posterior axis formation and epithelial polarity. Nature
2003, 421(6921):379-384.

Watts JL, Morton DG, Bestman ], Kemphues KJ: The C. elegans
par-4 gene encodes a putative serine-threonine kinase
required for establishing embryonic asymmetry. Development
2000, 127(7):1467-1475.

Baas AF, Kuipers ], van der Wel NN, Batlle E, Koerten HK, Peters PJ,
Clevers HC: Complete polarization of single intestinal epithe-
lial cells upon activation of LKBI by STRAD. Cell 2004,
116(3):457-466.

Alessi DR, Sakamoto K, Bayascas JR: LKBI-Dependent Signaling
Pathways. Annu Rev Biochem 2006.

Kishi M, Pan YA, Crump ]G, Sanes JR: Mammalian SAD kinases
are required for neuronal polarization. Science 2005,
307(5711):929-932.

Wolkow CA, Munoz M), Riddle DL, Ruvkun G: Insulin receptor
substrate and p55 orthologous adaptor proteins function in
the Caenorhabditis elegans daf-2/insulin-like signaling path-
way. | Biol Chem 2002, 277(51):49591-49597.

Hertweck M, Gobel C, Baumeister R: C. elegans SGK-1 is the crit-
ical component in the Akt/PKB kinase complex to control
stress response and life span. Dev Cell 2004, 6(4):577-588.

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central

O BioMedcentral

« yours — you keep the copyright

Page 9 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16631584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16631584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16631584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16917064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16917064
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9716524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9716524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9716524
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14597199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12885569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12885569
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12885569
http://www.f1000biology.com/article/id/1030638/evaluation
http://www.f1000biology.com/article/id/1030638/evaluation
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9443911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9443911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9443911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16914171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10693755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10693755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14614828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9428765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9428765
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9425897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9425897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9743993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14651849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14651849
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12150915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12150915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12150915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15261145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15261145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15586002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15586002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15586002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15788394
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8741837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8741837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8741837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15365568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15365568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1715094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1715094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9349496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9349496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9349496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9671456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9671456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9671456
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12540903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10704392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10704392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10704392
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15016379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15016379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16483250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16483250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15705853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15705853
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12393910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12393910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12393910
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15068796
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Nutrient stress blocks stem cell divisions
	Insulin signaling regulates the rate of GSC divisions
	Nutrients regulate GSC division rate through an insulin-dependent neuro-endocrine signal
	Insulin levels do not seem to affect niche-GSC signaling
	PtdIns3-phosphatase PTEN regulates GSC divisions in a FOXO-independent manner
	Mysterious G2/M arrest of low insulin-induced quiescent GSCs
	The LKB1/AMPK cascade links GSC division rate with insulin levels
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

