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Abstract

furrowing only locally.

Background: An oocyte undergoes two rounds of asymmetric division to generate a haploid gamete and two
small polar bodies designed for apoptosis. Chromosomes play important roles in specifying the asymmetric meiotic
divisions in the oocytes but the underlying mechanism is poorly understood.

Results: Chromosomes independently induce spindle formation and cortical actomyosin assembly into special cap
and ring structures in the cortex of the oocyte. The spindle and the cortical cap/ring interact to generate
mechanical forces, leading to polar body extrusion. Two distinct force-driven membrane changes were observed
during 2" polar body extrusion: a protrusion of the cortical cap and a membrane invagination induced by an
anaphase spindle midzone. The cortical cap protrusion and invagination help rotate the spindle perpendicularly so
that the spindle midzone can induce bilateral furrows at the shoulder of the protruding cap, leading to an
abscission of the polar body. It is interesting to note that while the mitotic spindle midzone induces bilateral
furrowing, leading to efficient symmetric division in the zygote, the meiotic spindle midzone induced cytokinetic

Conclusions: Distinct forces driving cortical cap protrusion and membrane invagination are involved in spindle
rotation and polar body extrusion during meiosis Il in mouse oocytes.

Background
Female meiosis in most animals is characterized by two
sequential asymmetric meiotic divisions following one
round of DNA replication, which results in formation of a
haploid egg and extrusion of two small polar bodies des-
tined for degeneration. Oocyte haploidization by means of
discarding half of the chromosomes into the polar bodies
represents a special mechanism for female gamete forma-
tion. To accomplish asymmetric cell division, a cell needs
to establish a cortical polarity, according to which the
mitotic/meiotic spindle is asymmetrically positioned [1-3].
The highly asymmetric cell divisions during female meio-
sis ensure that the produced haploid gametes maximally
inherit maternal components, which are beneficial for
embryo development.

Although polar body extrusion during female meiosis
has been recognized for many years, the mechanism by
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which oocytes accomplish the special asymmetric divi-
sions is still poorly understood. Early studies have noted
that the interaction of the chromosomes and the cortical
cytoskeleton plays important roles in polar body extru-
sion [4,5]. The mechanism of spindle rotation, cytokin-
esis, particularly the involved mechanical forces for
polar body extrusion, are not well understood. Our
recent studies have shown that chromosomes induce
cortical actin and myosin II assembly into a distinct
actin cap surrounded by a myosin II ring in the MII
eggs [6]. Interestingly, sperm chromatin incorporation at
fertilization or microinjection of DNA beads into MII
eggs induce cortical actin cap/myosinll ring similar to
that induced by maternal chromosomes [7]. The chro-
mosome-induced cortical actin cap/myosin II ring
undergoes protrusion during metaphase-anaphase tran-
sition, forming a cone [7,8] but little is known about its
role in spindle rotation and polar body extrusion. It is
known that during symmetric cell division in mitosis, an
anaphase spindle midzone induces bilateral furrowing
from the opposite cortex [9,10], which results in bisec-
tion of the mother cell into two daughter cells of similar
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size. However, little is known about the cytokinetic pro-
cesses during polar body extrusion.

In the present study, we injected DNA coated beads
into mouse MII eggs to mimic the chromosomes, and
show that the chromosomes induce cortical actomyosin
assembly and spindle formation independently, most
likely by different chromosome signals. While the chro-
mosome-induced cortical cap undergoes protrusion, the
anaphase spindle midzone first induces a unilateral fur-
row, which coordinates with the cap protrusion to cause
spindle rotation. After successful spindle rotation with
one spindle pole dragged by the protruding cortical cap
and the other spindle pole positioned in the cytoplasm,
the spindle midzone induces bilateral furrowing which
leads to an abscission of the polar body.

Results

Differential induction of cortical actomyosin assembly
and spindle formation by the chromosomes

It is known that chromosomes are able to induce both
microtubule assembly into a bipolar spindle and cortical
actomyosin assembly into a cap and ring [6]. It is
unclear however, whether the induction of spindle and
cortical polarity requires the same chromosome signal.
We have shown that DNA beads injected into the cor-
tex of the MII eggs behaved as the in vivo chromo-
somes, inducing a cortical actomysin cap/ring (Figure
1A-C, arrowheads), formation of a cortical granule (CQG)
free domain (Figure 1D-F, arrowheads), and a bipolar
spindle (Figure 1E, F) comparable to those induced by
meiotic chromosomes [6]. The induction of the cortical
actin cap and the CG free domain by DNA beads was
consistent with sperm chromatin injection as we
reported earlier [11]. By injecting DNA beads into the
cortex of the MII eggs, we were able to compare the
time required for cortical actomyosin assembly and
spindle formation when the chromosome signals were
positioned in the cortex. It was noted that the induction
of cortical actomyosin assembly was faster than that of
spindle formation (Figure 1G). In addition, the chromo-
some-induced actomyosin cap and spindle formation
are independent from each other. Our previous results
have shown that disruption of spindle formation by
nocodazole does not affect the DNA bead-induced cor-
tical cap formation [6] and both meiotic chromosomes
and DNA beads can induce spindle formation in the
absence of cortical cap induction especially when they
were positioned far away from the cortex (data not
shown) [6]. It was noted that 23 out of 49 eggs that
were cortically injected with DNA beads showed corti-
cal cap formation without spindle formation (data not
shown). All these results suggest that the induction of
the cortical cap and spindle formation require different
chromosomal signals.
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Microinjection of DNA beads revealed sequential
assembly of cortical actomyosin cap and myosin Il ring
We further followed up the kinetics of actin and myosin
II assemblies that are induced by the injected DNA
beads. It was interesting to note that myosin II and
actin first formed an overlapping cortical cap (Figure
2A-C, arrowheads). The myosin II-formed cortical cap
was later reorganized into a ring surrounding the actin
cap (Figure 2D-F, arrowheads), which is comparable to
that observed overlying the maternal MII chromosomes
(Figure 2D-F). This suggests that actin and myosin II
first form a cortical cap, which then reorganizes into a
myosin II ring surrounding the actin cap. Disruption of
the actin cap by Lat-A had no effect on the DNA bead-
induced myosin II cap formation but prevented the sub-
sequent myosin II cap reorganization into a ring (Figure
2G-I). Consistently, the pre-formed myosin II rings
changed back to the cap after Lat-A treatment and
interestingly, after washing out of Lat-A, the myosin II
caps were reorganized into rings again (data not shown).
This suggests that the chromosome-induced actomyosin
cap and ring are interchangeable structures, and an
actin cap is required for both the formation and the
maintenance of the myosin II ring.

The oocyte cortex underwent distinct protrusion and
invagination which led to polar body extrusion

Meiotic spindles in the MII eggs are usually positioned
parallel to the cortex [12]. After egg activation (induced
either parthenogenetically by SrCl, or fertilization), the
oocytes underwent anaphase onset. It is interesting to
note two distinct deformations in the cortex during
polar body extrusion: the membrane protrusion from
the cortical cap (Figure 3A, arrowhead) and a unilateral
membrane furrow overlying the anaphase spindle mid-
zone (Figure 3B, arrow). These cortical changes seem to
be coupled with the rotation of the spindle during polar
body extrusion. After the spindle is rotated to acquire a
perpendicular position, bilateral furrows were observed
at the shoulder of the protruding cap (Figure 3C, D),
which led to an abscission of the polar body (Figure 4D
arrows, Additional File 1).

Disruption of spindle microtubules by nocodazole had
no effect on the above described cortical cap protrusion
(Figure 3E), suggesting that the process is independent of
the spindle. It is known that fertilization or parthenoge-
netic activation of eggs by SrCl, induces oscillatory
changes of intracellular Ca®* concentration [13,14]. To
determine whether Ca®* is involved in the cortical cap
protrusion, Ca** was chelated by culture of the eggs in 50
uM BAPTA/AM (1,2-bis (aminophenoxy)-ethane-N, N,
N’, N'-tetraacetic acid) [13,15]. It was noted that the corti-
cal cap protrusion was completely suppressed by BAPTA/
AM (Figure 3F), suggesting that Ca®" is required for the
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Figure 1 Differential induction of cortical polarity and spindle formation by chromatin. (A-C) DNA bead-induced an actin cap (A, red,
arrowhead) and a myosin Il ring (B, green, arrowhead) which are comparable to those induced by maternal chromosomes (indicated by MII, A-
C, arrows). (D-F) DNA bead-induced cortical actin cap (shown in red) and cortical granule (CG) redistribution (shown in white). Note that the
injected DNA beads induced formation of a CG free domain (E, arrowhead), which is overlapping with the actin cap (D and E, arrowhead). The
arrows point to the MIl chromosome region. DNA is shown in blue in all the figures unless otherwise stated. (G) A bipolar spindle induced by
the injected DNA beads. In this image, the microtubules are shown in green. (H) A DIC image of G showing the DNA beads. (I) A comparison of
the time required for the cortical actin cap and spindle formation induced by DNA beads. The scale bars shown in all of the figures represent 20
um unless otherwise stated.
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Figure 2 Sequential induction of cortical cap and myosin Il ring by DNA beads. (A-C) DNA beads first induced a myosin Il cap (A, green,
arrowhead) and an overlapping actin cap (B, red, arrowhead) at 40 min after microinjection. Shown are representative images of 17 analyzed
eggs. (D-F) DNA bead-induced myosin ring formation (D, green, arrowhead) surrounding an actin cap (E, red, arrowhead) observed at 90 min
after injection (observation of over 50 eggs). (G-1) DNA bead-induced myosins Il cap instead of ring formation (G, green, arrowhead) after
disruption of actin by Lat-A. Note in H that actin (red) is not visible after Lat-A treatment.

cortical cap protrusion, most likely by activating myosin II
contractility [16]. Consistently, inhibition of myosin II
contraction by using blebbistatin [17] or myosin light
chain kinase by ML-7 [18] all blocked the cortical cap pro-
trusion (Figure 3G, H). These results suggest that the
observed cortical cap protrusion is caused by Ca®*
-mediated myosin II contraction.

Furthermore, it is noted that disruption of myosin II
contractility either by blebbistatin or ML-7 [18] had no

effect on chromosome segregation but blocked the spin-
dle rotation as indicated by the spindle being positioned
parallel to the cortex (Figure 3G, H), consistent with a
previous report [19].

Furrow induction by the spindle midzone in the oocyte is
distance-dependent

As shown above, the membrane furrow induction by the
anaphase spindle midzone was always observed at the



Wang et al. Cell Division 2011, 6:17
http://www.celldiv.com/content/6/1/17

Page 5 of 9

I |
|
'\ E
Noc
= &

i Blebb

Figure 3 Cortical protrusion and spindle midzone-induced membrane furrowing during polar body extrusion. (A-D) Different time
points after SrCl, treatment showing the cortical cap protrusion (arrowheads) and the spindle midzone-induced membrane furrowing (arrows).
Note the cortical protrusion overlying the chromosomes (arrowheads) and the spindle midzone-induced membrane furrows changing from the
initial unilateral (B and C, arrowheads) to the eventual bilateral (D, arrowheads). (E) Cortical cap protrusion (arrowhead) after disruption of spindle
microtubules by nocodazole. (F) Block of cortical protrusion by BAPTA/AM. (G, H) Block of cortical protrusion by blebbistatin and ML-7 during
egg activation.

adjacent cortex and never observed at the distant cortex
(observation of over 130 activated eggs). To test whether
the anaphase spindle midzone induces cortical mem-
brane furrowing in a distance-dependent manner, DNA
beads were injected into the center of the eggs to induce
spindle formation farther away from the cortex (Figure
4A). After inducing anaphase by SrCl,, the DNA bead-

spindle underwent metaphase-anaphase transition but
no membrane furrow and cytokinesis were induced by
the anaphase spindle midzone (Figure 4B, observation of
15 eggs). In contrast, when DNA beads were injected to
the cortex which induced spindle formation close to the
cortex (data not shown), the DNA bead-spindle induced
cortical furrowing and polar body extrusion after egg

-
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Figure 4 A distance-dependent membrane furrow induction by the spindle midzone. (A) DNA bead-induced spindle formation at the
center of an MIl egg. (B) After inducing anaphase by SrCl,, the centrally positioned anaphase spindle was unable to induce membrane
furrowing. Note that the cortically positioned maternal chromosomes and spindle (indicated by MIl) induced the ond polar body extrusion (Pbll).
(C) The DNA bead-induced spindles were able to induce membrane furrowing and polar body extrusion (indicated by Pb) if positioned close to
the cortex.
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activation (Figure 4C) [20]. These results suggest that
the furrow induction by the anaphase spindle midzone
in the oocytes is distance-dependent.

Discussion

Chromosomal determination of asymmetric meiotic
division in the oocytes

In contrast to mitotic cells where cell polarity is speci-
fied by the spindle microtubules [21] or centrosomes
[22], meiotic chromosomes plays an important role in
establishing cortical polarity of the oocytes [6] which are
devoid of centrosomes [23]. In addition, the chromo-
somes also play a key role in organizing bipolar spindle
formation in the oocytes [24,25] which is independent
of cortical polarity. Thus, chromosomes play a dual role
in defining asymmetric meiotic divisions in the oocytes
by: 1) specifying a cortical polarity; 2) inducing spindle
formation. However, the chromosome-induced two
events are independent from each other and disruption
of either has no effect on the other [6]. The uncoupling
of chromosome segregation and cytokinesis suggests a
lack of a functional spindle-position checkpoint during
female meiosis.

Successful induction of ectopic polar body extrusion
by microinjection of DNA beads has provided a useful
tool to study asymmetric meiotic division in the oocytes.
It is interesting to note that while the very nature of the
reductional chromosome segregations (a step-wise seg-
regation between the homologous chromosomes and
then between the sister chromatids) is determined by
the special organization of the meiotic chromosomes
[26], the spindle formation and polar body extrusion
however, are induced by more general chromosome sig-
nals. This “inconsistency” of the chromosomal behavior
during meiosis makes oocytes more vulnerable to gener-
ating errors during asymmetric meiotic divisions, given
that any isolated chromosomal structure has a potential
to induce an ectopic polar body extrusion in an oocyte
[4,7].

It should be pointed out that although microtubules
can self-assemble into a bipolar spindle in mouse
oocytes in the absence of chromosomes [6,27], the
formed chromatin-less spindle is unable to induce either
cortical cap formation [6] or any cortical protrusion
(unpublished observation). The lack of function of the
chromatin-less spindle may ensure polar body extrusion
induced only by the chromosome-induced spindle.

To reduce the chromosome number in half and pre-
serve as much as possible the cytoplasmic components
in the mature oocytes, the chromosome segregation
must be coupled with polar body extrusion. This is
achieved by chromosome migration and anchoring to
the cortex during the process of the two meiotic divi-
sions. Recent reports show that the chromosome
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cortical migration requires Formin-2-mediated actin
assembly [28-32]. Our previous report shows that the
chromosomes induce cortical polarization in a distance-
dependent manner [6]. Through a close-range induction
of cortical polarity and spindle formation by the chro-
mosomes, the chromosome segregation by the spindle is
spatially coupled to the actomyosin-driven cortical pro-
trusion. After anaphase onset, the spindle midzone
induces a unilateral furrow at the adjacent cortex but
not the distal cortex (Figure 3A, B), which suggests that
the midzone-induced furrow during meiosis is also dis-
tance-dependent. The distance-dependent furrow indu-
cing activity by the anaphase spindle midzone in the
oocytes requires a perpendicular position of the spindle
relative to the protruding cortex, which may maximize
the constriction of the contractile ring at the shoulder
region of the cortical protrusion, leading to the final
abscission of polar body.

Coordination of the chromosome-induced cortical
protrusion and the spindle midzone-induced cortical
furrowing during polar body extrusion

The chromosome-induced spindle and cortical actomyo-
sin cap play distinct roles in polar body extrusion (Fig-
ure 5). Our results show that the cortical cap undergoes
protrusion after anaphase onset which is important for
spindle rotation during polar body extrusion. The signif-
icance of the cortical cap protrusion may be two fold: 1)
it may generate an unbalanced force for spindle rotation
and 2) it may coordinate with the spindle midzone-
induced furrow to correctly position the anaphase spin-
dle midzone to the neck region of the bulging cortex for
efficient polar body abscission. It is interesting to note
that in contrast to the first mitosis in the zygotes where
a centrally positioned midzone induces robust bilateral
furrowing from the center of the oocyte [33], the meio-
tic spindle can only induce a unilateral furrow from the
closer cortex (Figure 3A, 5). This suggests that there is a
significant difference between mitosis and meiosis with
regard to the ability of the anaphase spindle midzone to
induce cytokinetic furrows. It seems that the furrow-
inducing ability by the spindle midzone is restricted in
the meiotic oocytes so that it can only induce cortical
furrowing within a very close distance. This distance-
dependence, as well as that of induction of the cortical
cap by the chromosomes, may provide a double check-
point to ensure the highly asymmetric divisions in the
oocytes.

Conclusions

Chromosomes determine the site for polar body extru-
sion by inducing a cortical actomyosin cap/ring and a
bipolar spindle. After anaphase onset, the cortical cap
undergoes protrusion and the spindle midzone induces
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Figure 5 A simplified model depicting the cortical cap protrusion and spindle midzone-induced membrane furrowing during polar
body extrusion. (A) Chromosomes induce formation of a cortical actomyosin cap/ring prior to polar body extrusion. The squared region of the
cortical cap/ring is shown on the top, an actin cap (red) surrounded by a myosin Il ring (green). (B) Egg activation induces the cortical cap
protrusion. (C) The anaphase spindle midzone induces unilateral furrowing. (D) Spindle rotation. (E) Spindle midzone induces bilateral furrowing

Bilateral furrowing
and abscission of
polar body

Spindle rotation

membrane furrowing in a distance-dependent manner.
A coordination of the cortical cap protrusion with the
distance-dependent membrane furrowing induced by the
spindle midzone is critical for successful polar body
extrusion.

Methods

Oocyte and egg collection and culture

All the experiments were performed following the ani-
mal protocol (protocol number 04638) that is approved
by the IACUC at Harvard Medical School.

Female mice of CD1 at age of 4-6 week-old were
superovulated by injection of pregnant mare serum
gonadotropin (PMSG) and human chorionic gonadotro-
pin (hCG) as described previously [34] and the ovulated
eggs were collected from oviducts 14-15 h after hCG
injection as previously described [11].

Microinjection
DNA beads were prepared as described [6,25] and
injected into the MII eggs as described previously [6].

Briefly, a cluster of 3-5 DNA beads was injected into
the cortex distal to the maternal meiotic chromosome/
spindle to induce ectopic formation of a cortical cap
and a bipolar spindle as described previously [6,11] for
convenient observation of the cortical response and
ectopic polar body extrusion. Naked beads that are not
coated with DNA were injected into the eggs as a
control.

The injected eggs were cultured in M16 (Chemicon)
at 37°C in an atmosphere of 5% CO, in air for different
periods of time to evaluate the cortical actomyosin cap
and ring formation and spindle induction. To determine

the time required for the cortical actin cap and spindle
induction by DNA beads, the eggs were fixed every 20
min after microinjection to immunostain actomyosin
and spindle microtubules as described before [6].

Drug treatments

Eggs were treated with blebbistatin (Calbiochem, San
Diego, CA, USA) at 100 uM to specifically inhibit myo-
sin II contractility [6,35] for 30-40 min, ML-7 (Sigma) at
50 uM to inhibit myosin light chain kinase [18,19,36],
and nocodazole (Sigma) at 10 uM for 30-40 min prior
to bead injection. For Lat-A treatment, we injected eggs
with DNA beads first and then transferred the bead-
injected eggs to 100 pM Lat-A (Sigma) within 5 min to
ensure an optimal survival of the injected eggs [6].

Egg activation

Eggs were either parthenogenetically activated by 10
mM SrCl, in Ca®* free CZB medium [37,38] or fertilized
with sperm in vitro as described previously to induce
anaphase onset [20,34]. For convenient observation of
the chromosome-induced cortical polarization and polar
body extrusion, zona pellucida was removed from the
eggs using acidic Tyrode solution [34].

Immunofluorescence and Confocal microscopy

Eggs were fixed, immunostained and mounted on slides
as described previously [6,11,18]. The antibodies and the
reagents used for immunostaining to visualize actin,
myosin II, cortical granules, microtubules, DNA were
described previously [6,11,18,20]. Spindle midzone was
stained using rabbit survin antibody (Abcam, Cam-
bridge, UK, 1:400) and Alexa 633 conjugated secondary
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antibody. All the images were acquired by using a 40x
or a 63x oil objective on a Zeiss LSM510 Confocal
microscope. To construct 3D images, a stack of at least
50 Z-section images spanning all the observed structures
was collected and reconstructed using Zeiss LSM-CES.
The images were processed using Photoshop 7.0 and
assembled in Canvas 11.

Live imaging of the oocytes during polar body extrusion
To visualize spindle and chromosome behavior during
DNA bead-induced ectopic polar body extrusion, DNA
bead-injected eggs were injected with rhodamine-labeled
tubulin (Cytoskeleton, Denver), at a concentration of 2
mg/ml (injection volume 5 pl) and stained with Hoechst
33342 (Sigma) at a concentration of 5 ng/ml in a cham-
ber containing Ca”>* free CZB. The eggs were activated
with SrCl, as described above and observed using a Zeiss
510 NLO Confocal microscopy to visualize the rhoda-
mine-labeled spindle and Hoechst-labeled DNA. Live
imaging was performed on an on- stage incubator which
maintains temperature at 37°C and 5% CO2. Z-section
images were collected at a time interval of 7 min.

Additional material

Additional file 1: A 4D movie showing the DNA bead-induced
ectopic polar body extrusion during meiosis Il. The DNA beads
(shown in blue) were injected at 10 O'clock position. Microtubules were
labeled by microinjection of rhodamine conjugated tubulin. Note that
the DNA bead spindle underwent rotation from horizontal to vertical
position and the DNA beads were kept in the eggs after ectopic polar
body extrusion. Maternal chromosomes are out of the z-sections.
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