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Abstract

Background: Cell division is positively requlated by cyclin-dependent kinases (CDKs) partnered with cyclins and
negatively regulated by CDK inhibitors. In the frog, Xenopus laevis, three types of CDK inhibitors have been
described: p277" (Xic1) which shares sequence homology with both p21<°" and p27°" from mammals, p16
(Xic2) which shares sequence homology with p21<P", and p17°“ (Xic3) which shares sequence homology with
p27" P While past studies have demonstrated that during DNA polymerase switching, Xic1 is targeted for protein
turnover dependent upon DNA, Proliferating Cell Nuclear Antigen (PCNA), and the ubiquitin ligase CRL4“® ittle is
known about the processes that regulate Xic2 or Xic3.

Xic2

Methods: We used the Xenopus interphase egg extract as a model system to examine the regulation of Xic2 by
proteolysis and phosphorylation.

Results: Our studies indicated that following primer synthesis during the initiation of DNA replication, Xic2 is
targeted for DNA- and PCNA-dependent ubiquitin-mediated proteolysis and that Cdt2 can promote Xic2 turnover.
Additionally, during interphase, Xic2 is phosphorylated by CDK2 at Ser-98 and Ser-131 in a DNA-independent
manner, inhibiting Xic2 turnover. In the presence of double-stranded DNA ends, Xic2 is also phosphorylated at Ser-
78 and Ser-81 by a caffeine-sensitive kinase, but this phosphorylation does not alter Xic2 turnover. Conversely, in
the presence or absence of DNA, Xic3 was stable in the Xenopus interphase egg extract and did not exhibit a shift
indicative of phosphorylation.

Conclusions: During interphase, Xic2 is targeted for DNA- and PCNA-dependent proteolysis that is negatively
regulated by CDK2 phosphorylation. During a response to DNA damage, Xic2 may be alternatively regulated by
phosphorylation by a caffeine-sensitive kinase. Our studies suggest that the three types of Xenopus CDK inhibitors,
XicT, Xic2, and Xic3 appear to be uniquely regulated which may reflect their specialized roles during cell division or
early development in the frog.
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Background

The vertebrate cell cycle is positively regulated by
cyclin-dependent kinases (CDKs) and negatively regu-
lated by CDK inhibitors [1]. Vertebrate CDK inhibitors
of the Cip/Kip-type bind to and negatively regulate
CDK2-cyclins E/A and the onset of DNA replication [2].
Cip-type CDK inhibitors also bind to and negatively
regulate the replication protein, Proliferating Cell Nu-
clear Antigen (PCNA) [3]. Studies have indicated that
mammalian Cip/Kip-type CDK inhibitors are frequently
targeted for ubiquitin-mediated protein turnover during
the G1 to S phase transition resulting in the activation
of CDK2-cyclins and the progression into S phase [4-8].

In the frog, Xenopus laevis, three Cip/Kip-type CDK
inhibitors have been identified that share sequence hom-
ology with mammalian p21“P* (p21), p27""* (p27), and
p57° 1% (p57) [9-11]. p277'!/p28" ™! (Xic1/Kix1) shares
homology with all three of the mammalian Cip/Kip-type
CDK inhibitors while p16XiC2 (Xic2) is more closely re-
lated to p21 and p17*“® (Xic3) is more closely related to
p27 [9-11]. Developmental studies suggest that Xicl is
the only CDK inhibitor that is expressed in the early em-
bryo and studies indicate that Xicl is required for both
the differentiation of nerve and muscles cells [11-18].
The expression of both Xic2 and Xic3 appears to be
more tissue-specific in nature with Xic2 found in so-
mites, the tail bud, lens, and the cement gland while
Xic3 is expressed primarily in the central nervous system
[11]. While overexpression of Xic2 and Xic3 in the de-
veloping embryo results in an arrest in cell division due
to an inhibition of CDK2 activity, little is known about
the possible regulatory pathways that may control the
activities of Xic2 or Xic3 [11].

Using the Xenopus interphase egg extract as a model
biochemical system to study DNA replication initiation
and CDK inhibitor regulation, studies have demon-
strated that Xicl is targeted for ubiquitination by the
ubiquitin ligase, CRLA*? in a DNA- and PCNA-
dependent manner during DNA polymerase switching
resulting in its degradation [19-21]. In an effort to
understand the possible molecular mechanisms that may
regulate Xic2 and Xic3, we have taken a similar ap-
proach and used the Xenopus interphase egg extract as a
biochemical model system to study Xic2 and Xic3. Our
results suggest that while Xic3 appears to be stable in
the Xenopus extract, Xic2 is targeted for ubiquitination
and phosphorylation in the extract in a manner that is
dependent upon specific DNA templates.

Results

Xenopus Cip/Kip-type CDK inhibitors are differentially
modified in the interphase egg extract

To study the regulation of the Xenopus CDK inhibitor,
Xicl, we have previously used the biochemically
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tractable egg extract as a model system [19]. In these
studies, we have dissected the molecular mecha-
nism of Xicl turnover and have found that Xicl is
degraded in the egg extract during DNA polymer-
ase switching in a DNA-, PCNA-, and CRL4“4%
dependent manner [19-23]. CRL4AY2 is a member of
the Cullin-RING-type ubiquitin ligases which includes
CRL1%%P%, previously shown to ubiquitinate Xicl
in vitro [24]. Using the interphase egg extract, we
found that Xic3 was completely stable in the egg ex-
tract, Xic2 was partially degraded and partially modi-
fied in a manner resembling ubiquitination and/or
phosphorylation (Figure 1A), and Xicl was readily
degraded as shown in previous studies [21]. The Xic2
modification resembling ubiquitination appeared
to be DNA-dependent while the putative phos-
phorylation of Xic2 (band migrating at ~22 kDa)
was not dependent upon the presence of DNA
(Figure 1A). To further examine the modified species
of Xic2, we added methyl ubiquitin to stabilize
monoubiquitination and prevent polyubiquitination
[25] and found that the higher molecular weight
forms of Xic2 were stabilized indicating that they
represent monoubiquitinated Xic2 species (Figure 1B).
We also noticed that while the unmodified form of
Xic2 decreased as the ubiquitinated forms of Xic2
increased, the modified form of Xic2 which may rep-
resent  phosphorylated  Xic2 remained stable
(Figure 1B). Cellular localization studies indicated
that both the ubiquitinated forms and the putative
phosphorylated form of Xic2 were localized predom-
inantly to the nucleus (Figure 1C) [23]. These stud-
ies suggest that the unmodified form of Xic2 can be
degraded by a DNA and ubiquitin-dependent path-
way in the interphase egg extract while the putative
phosphorylated form of Xicl may be resistant to
ubiquitination and degradation.

To examine Xic2 in a more physiological manner, we
generated an antibody to Xic2 and immunoblotted the
Xic2 protein in the Xenopus interphase egg extract and
in Xenopus Tissue Culture (XTC) cells. We found that
Xic2 was present at very low levels in the interphase egg
extract following immunoprecipitation and immunoblot-
ting (Figure 1D, left panel), while in XTC cells, Xic2 was
readily detectable as a single protein band (Figure 1D,
left panel). Moreover, we found that following ionizing
irradiation (IR) of XTC cells, the expression of Xic2 was
greatly increased and was easily detectable by direct im-
munoblotting (Figure 1D, right panel). This result sug-
gests that Xic2 is not highly expressed in the early
embryo, but becomes more highly expressed in somatic
cells. Additionally, this result suggests that like mamma-
lian p21 [26], Xic2 is highly induced following exposure
to IR.
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Figure 1 Xic2 is ubiquitinated and degraded in a DNA dependent manner. A. Degradation assay. **S-methionine labeled Xic1, Xic2, and
Xic3 were incubated in Xenopus interphase egg extract (Low Speed Supernatant, LSS) in the absence () or presence (+) of Xenopus sperm
chromatin (XSC) for 0 to 3 hours as indicated. The mean percentage of remaining protein from two independent experiments is shown

(% protein remaining) where the zero hour time point was normalized to 100%. Xic1, Xic2, and Xic3 protein bands are marked on the right
including ubiquitinated [(UB)n] forms of Xic2. B. Xic2 ubiquitination assay. 3S-methionine labeled Xic2 was incubated in LSS with methyl
ubiquitin (3 mg/ml) to stabilize the ubiquitinated species in the absence (-) or presence (+) of XSC for O to 3 hours as indicated. Xic2 protein
bands are marked on the right including ubiquitinated [(UB)n] forms. C. Nuclei spin down assay. Nuclei spin down assay was employed to
separate cytosolic (CYT) and nuclear fractions (NUC) after incubation of [**S]-methionine labeled Xic2 with LSS containing XSC. The input (INPUT)
represents 1/15th of the sample before centrifugation and the cytosolic (CYT) represents 1/15™ of the cytosolic fraction after centrifugation.
Xic2-(UB) n denotes ubiquitinated Xic2. D. Xic2 immunoblot. Left panel: Xenopus LSS or XTC cell extracts were immunoprecipitated (IP) using
anti-Xic2 (XIC2) or normal rabbit serum (Mock) antibody and then immunoblotted with anti-Xic2 antibody. Ten percent of the
immunoprecipitation reaction was loaded directly (10% INPUT). Right panel: XTC cells were treated with gamma irradiation (IR, 10 Gy) and
harvested 4 or 8 hrs following treatment. Lysates were then examined by immunoblotting with anti-Xic2 antibody. For all figures, the molecular
weight marker (M) is shown in kilodaltons.
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Xic2 is uniquely phosphorylated during the cell cycle and
in response to single-stranded DNA

To characterize the nature of the DNA-independent
modified Xic2 species, we examined Xic2 in the
membrane-free interphase high speed supernatant
(HSS), the membrane-containing interphase LSS, and a
stable mitotic extract (A90 extract) generated by
supplementing interphase extract with non-degradable
cyclin B [19,21]. In the absence of DNA, we observed a
putative phosphoform of Xic2 in both the HSS and LSS
that was reversed by phosphatase treatment (Figure 2A).
Moreover, multiple Xic2 phosphoforms observed to be
diminished by phosphatase were present in the mitotic
extract suggesting potentially multiple sites of Xic2
phosphorylation during mitosis (Figure 2A). Similar
studies resulted in no detectable shift of the Xic3 protein
band in either interphase or mitotic egg extracts (data
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not shown) while previous studies have demonstrated
that Xicl is phosphorylated in the mitotic extract [9,19].
To further examine the phosphorylation of Xic2 and the
DNA-dependent turnover of Xic2, we examined Xic2 in
different extract systems with alternative DNA tem-
plates. In the membrane-containing LSS, Xic2 was
stable in the absence of DNA and in the presence of
super-coiled plasmid DNA, but was roughly 50% de-
graded in the presence of single-stranded DNA and
sperm chromatin (Figure 2B). As noted above, Xic2
exhibited a single DNA-independent phosphoform in
the interphase extract which we term “phosphoform 1”
(Figure 2B and D). Curiously, in addition to phos-
phoform 1, Xic2 exhibited at least two additional shifts
we term “phosphoforms 2” in both the LSS and HSS
only in the presence of single-stranded DNA (Figure 2B,
C, and D). To determine if any of the modified forms of
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Figure 2 Xic2 is differentially phosphorylated in the absence and presence of single-stranded DNA. A. Xic2 phosphorylation shift assay.
35-methionine labeled Xic2 was incubated in interphase egg extract (LSS or HSS) or mitotic extract (A90) as indicated in the absence () or
presence of 80 or 200 units (U) of lambda phosphatase (\-PPase). B. Xic2 phosphorylation shift and degradation assay. **S-methionine labeled
Xic2 was incubated in LSS with buffer (no DNA), single-stranded ®X174 DNA (ssDNA, 10 ng/ul), pCS2+ plasmid DNA (dsDNA, 10 ng/ul), or XSC
(10 ng/ul) at 23°C. Samples were analyzed by SDS-PAGE at 0-3 hrs. The mean percentage of remaining Xic2 from two independent experiments
is shown (% Xic2 remaining) where the zero hour time point was normalized to 100%. C. Xic2 degradation assay. >*S-methionine labeled Xic1 or
Xic2 was incubated in HSS with (+) or without (=) single-stranded DNA (ssDNA) for 0-3 hrs as indicated. Molecular weight markers are shown in
kilodaltons. D. Schematic representation of 35S_methionine labeled Xic2 phosphoforms in the absence of extract or DNA (IVT) (left lane), in the
presence of LSS with or without XSC (middle lane), or in the presence of LSS or HSS with ssDNA (right lane). Unphosphorylated Xic2 is marked by
the blue line (XIC2), Xic2 phosphoform 1 is marked by the purple line and the caret (>), and Xic2 phosphoforms 2 are marked by the pink lines
and the asterisks (*). E. Xic2 co-immunoprecipitation with cyclin E. 35S-methionine labeled Xic2 was incubated in HSS without (no DNA) or with
(ssDNA) as indicated. Xic2 was co-immunoprecipitated (IP) with anti-cyclin E or control antibody. 10% of the input reaction is shown (10% INPUT).
In all figures, “XIC2-P" or the caret (<) and asterisks (*) indicate the phosphoforms of Xic2 and ubiquitinated Xic2 protein bands are indicated




Zhu et al. Cell Division 2013, 8:5 Page 5 of 14
http://www.celldiv.com/content/8/1/5

A HSS

APHID
BUEEEL 100ng/ul

ssDNA: + + + - |+ + + -
TIME(HR): 0153 3|015 3 3

XIC2-
(UB)n

LI T EIE

% XIC2
REMAINING: 51 113
B LSS
YV Xic2 WT | Xic2 F123A
Hs-p21Cip1l-GRKRR---QTSMTDFYHSKRRLIFS XSC: + + + — |+ + + — N 30
X1-p27Xicl--RRKREIT-TPITDYFPKRKKILSA TIME: 0153 3(015 3 3 x ] [Oxic2wr
X1-pl6Xic2-GKRK---~OKLITHENPVKRRCSPV (HR) 2 [ Xic2 F123A
PCNA Binding g 20
F
XIC2- 3
~  GST-XIC2 (B s °
s — 2
o < < T
ok, » 4 % g 0 B ) Y s e |
w B ® ~ — 1O 0 1.5 3 3
r_l"@ [T o I " ‘ . (No DNA)
r "’ ] Cyclin E - H - a‘ - ! » :IXIC2 Time(hr)
SSas ame-PCNA
12345 % XIC2
REMAINING: 57 83
C HSS
NOT CTRL PCNA
DEPL DEPL DEPL
ssDNA: + + + - |+ + + - |+ + + -
TIME(HR): 0153 3[{0153 3|0153 3
100
=]
E 80 1
e E
& B Xic2- E 60
g o0 (UB)n E
- RS 2 401 [ ——nNOT DEPL
O ~O =
2Kk0 5 50 |8 CTRLDEPL
2 —A— PCNA DEPL
P - 0 . ,
:IXICZ 0 15 3
. . ’ Time(hr)
£ C : ».

Figure 3 Xic2 is degraded in a PCNA-dependent manner. A. Xic2 degradation assay. >°S-labeled Xic2 was incubated in HSS with (+) or
without (=) ssDNA (OX174) with buffer (methanol) or aphidicolin (100 ng/ul). The mean percentage of remaining Xic2 from two independent
experiments is shown (% Xic2 remaining) where the zero hour time point was normalized to 100%. B. Left top panel: Sequence alignment of the
PCNA binding domain in human p21<®", Xenopus p27*'", and Xenopus p16*“. The arrows indicate the critical PCNA binding amino acids in
p21°P! The rectangle indicates the PIP box sequences and the circle indicates the residue (F123) mutated to disrupt PCNA binding. Left bottom
panel: Xic2 GST pull-down assay. GST, GST-Xic2 wildtype (WT), or GST-Xic2 mutants (S98A, F123A, S131A, or T58A) were bound to beads and
incubated with LSS. Bound fractions were analyzed by immunoblotting with a-XCyclin E (top) or a-PCNA antibody (bottom). 20% of the input
reaction is shown in the left lane (LSS 2ul). Middle panel: Xic2 degradation assay. **S-labeled Xic2 wildtype (WT) or F123A were incubated in LSS
with (+) or without (=) 10 ng/ul XSC. The mean percentage of remaining Xic2 from two independent experiments is shown (% Xic2 remaining)
where the zero hour time point was normalized to 100%. Right panel: The mean relative ubiquitinated Xic2 WT or F123A from two independent
experiments. C. PCNA Depletion and Xic2 degradation. Left panel: PCNA immunoblot of HSS not depleted (NOT DEPL), control-depleted (CTRL
DEPL), or PCNA-depleted (PCNA DEPL). Middle panel: 355 Jabeled Xic2 in HSS that was not depleted (NOT DEPL), control-depleted (CTRL DEPL), or
PCNA-depleted (PCNA DEPL) with (+) or without (—) ©X174 (ssDNA, 10 ng/ul). Right panel: The mean percentage of Xic2 remaining from two
independent experiments is shown. For all figures, the ubiquitinated Xic2 protein bands are indicated as “XIC2-(UB)n"
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Xic2 altered Xic2’s ability to associate with cyclin E in
the egg extract, we performed an immunoprecipitation
reaction using anti-cyclin E antibody and found that all
the modified forms of Xic2 could readily associate with
cyclin E (Figure 2E).

Xic2 turnover is dependent upon PCNA and PCNA
binding

Previous studies identified a requirement for PCNA
and PCNA binding for Xicl turnover and deter-
mined the timing of Xicl turnover was during the
DNA polymerase switching step of DNA replication
initiation [21]. To examine the timing of Xic2 turn-
over, we added aphidicolin, an inhibitor of DNA
polymerases [21]. Our studies indicated that Xic2
turnover was inhibited by the addition of aphidicolin
suggesting Xic2 proteolysis likely requires the activity
of DNA polymerase a and the timing of Xic2 deg-
radation occurs following the synthesis of a DNA
primer, similar to Xicl (Figure 3A) [21]. We next
identified a consensus PCNA-interacting protein
(PIP) box motif (*QKLITDFY'**) within the C-
terminus of Xic2 with shared sequence homology to
both human p21 and Xenopus Xicl (Figure 3B, left
top panel). When we tested the ability of Xic2 to as-
sociate with PCNA in the Xenopus egg extract, we
found that wildtype Xic2 could readily associate with
PCNA (Figure 3B, left bottom panel, lane 1). To
study a requirement for PCNA binding in Xic2 pro-
teolysis, we mutated a conserved hydrophobic resi-
due of Xic2 within the PIP box (F123) (Figure 3B
left panels) and examined this mutant in a degrad-
ation assay (Figure 3B, middle and right panels). Past
studies have indicated that key conserved hydropho-
bic residues within the PIP box of p21 and Xicl are
critical for binding to PCNA and consistent with this
finding, mutation of Xic2 F123 completely disrupted
its ability to bind PCNA in the egg extract
(Figure 3B, left bottom panel) [21,27,28]. We found
that at the 1.5 and 3 hour time points, the Xic2-
F123A point mutant was significantly reduced for
ubiquitination compared to wildtype Xic2 (Figure 3C,
middle and right panels), suggesting that PCNA
binding to Xic2 plays an important role in Xic2
ubiquitination. We also noted a moderate effect on
Xic2 turnover (Figure 3B, middle panel). To explore
the role of PCNA in Xic2 turnover further, we
depleted PCNA from the Xenopus extract and stud-
ied Xic2 turnover (Figure 3C). The results showed
that in the absence of PCNA, Xic2 ubiquitination
and turnover were inhibited, again suggesting that
PCNA plays an important role in Xic2 proteolysis
(Figure 3C, middle and right panels).
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The addition of Cdt2, but not Skp2, promotes the
turnover of Xic2

Past studies have indicated that many substrates of the
ubiquitin pathway that require PCNA and PCNA bind-
ing for their proteolysis are frequently targeted for
ubiquitination by the CRL4“‘* ubiquitin ligase [29,30].
CRL4“? has been shown to ubiquitinate several sub-
strates in a PCNA-dependent manner including Xicl,
p21, and Cdtl [29,30]. Because our studies suggest that
the ubiquitination of Xic2 is dependent upon PCNA, we
examined whether Xic2 could associate with Cdt2, the
substrate binding component of CRL4. Surprisingly,
using a GST pull-down assay, our studies indicated that
Xic2 did not readily bind to in vitro translated Cdt2
compared to Xicl and p21 (Figure 4A). To further ex-
plore a possible role for CRL4“‘** in Xic2 turnover, we
supplemented the extract with Cdt2 to determine
whether this could promote the turnover of Xic2. Our
previous studies have shown that for Xicl turnover,
Cdt2 is limiting in the egg extract [20]. Our studies
showed that the addition of unlabeled in vitro translated
Cdt2 promoted the degradation of Xic2 compared to the
addition of unprogrammed reticulocyte lysate, while the
addition of in vitro translated Skp2 did not (Figure 4B).
Moreover, the concurrent addition of both the CDK
inhibitor p27 to prevent Xic2 phosphorylation and Cdt2,
significantly promoted the turnover of Xic2, beyond the
promotion observed by adding either component indi-
vidually (Figure 4B). These studies suggest that Cdt2 plays
a role in Xic2 ubiquitination and that Xic2 may only asso-
ciate tightly with Cdt2 in the context of replicating DNA
as has been proposed for Xenopus Cdtl [29].

Xic2 phosphorylation by CDK2 inhibits its proteolysis
during interphase

Upon examination of Xic2 in the presence of XSC in the
Xenopus LSS, it is apparent that Xic2 is simultaneously
targeted for phosphorylation and proteolysis. However,
the proteolysis of Xic2 in the interphase extract is not
highly efficient, especially when compared to the prote-
olysis of Xicl under the same conditions (Figure 1A).
We hypothesized that perhaps the phosphorylation of
Xic2 may be negatively regulating the turnover of Xic2.
A well-characterized active kinase in the Xenopus inter-
phase extract is CDK2-cyclin E [13,31] and to explore
whether CDK2 activity may inhibit Xic2 turnover, we ex-
amined the effect of CDK2 inhibitors on Xic2 stability.
Because CDK2 activity is required for DNA replication
initiation in the LSS and Xic2 is degraded during DNA
polymerase switching following the CDK2 requirement
(Figure 3A), for these studies, it was necessary to use the
HSS with single-stranded DNA which supports DNA
polymerase switching and Xic2 turnover, but does not
require CDK activity [21]. In the presence of either
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Figure 4 Cdt2 readily promotes Xic2 turnover in the presence
of p27 CDK inhibitor. A. GST pull-down assay. GST alone or GST
fused to wildtype Xic1 (Xic1™", 1174A mutant of Xic1 (Xic1"7#"),
Xic2, p21, or p27 (shown in coomassie gel shown in bottom panel)
were bound to glutathione sepharose and incubated with in vitro
translated **S-methionine labeled Xenopus Cdt2 (XCdt2). 5% of the
input XCdt2 is shown in lane 1 of the top panel (5% Input). B. Xic2
degradation assay. Top panel: **S-methionine labeled Xic2 was
incubated in HSS with (+) or without (=) 10 ng/ul ssDNA (ssDNA) in
the presence (+) or absence (-) of p27, unprogrammed reticulocyte
lysate (Unprog), or unlabeled in vitro translated Cdt2 (CDT2) for O to
3 hrs as indicated. Bottom panel: Graphic representation of Xic2
degradation. **S-methionine labeled Xic2 was incubated in HSS with
10 ng/ul ssDNA and the percentage of Xic2 remaining was
calculated for each sample where the zero hour time point was
normalized to 100%. Reactions were supplemented with
unprogrammed reticulocyte lysate (Unprog) (7 experiments),
unlabeled in vitro translated Cdt2 (Cdt2) (7 experiments),
unprogrammed reticulocyte lysate with p27 (Unprog+p27) (4
experiments), unlabeled in vitro translated Cdt2 with p27 (Cdt2+p27)
(4 experiments), or unlabeled in vitro translated Xenopus Skp2 (Skp2)
(3 experiments). Error bars (Standard error of the mean) are shown.
P values were calculated by student t-test comparing each sample
with the addition of unprogrammed reticulocyte lysate (Unprog).
1.5 hr p values: Cdt2 (0.000463), Unprog+p27 (0.270), Cdt2+p27
(0.00184), Skp2 (0.702). 3 hr p values: Cdt2 (0.00120), Unprog+p27
(0.0130), Cdt2+p27 (6.56E-05), Skp2 (0.306).
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roscovitine or the CDK inhibitor p27, Xic2 turnover in
the extract was significantly accelerated compared to the
negative controls (DMSO and GST) (Figure 5A). Add-
itionally, in the presence of CDK inhibitors and in
absence of DNA, the Xic2 protein bands remained
unshifted indicating that the phosphoforms of Xic2 ob-
served in the absence of DNA and CDK inhibitors is
due to CDK2 phosphorylation (Figure 5A).

To directly test the role of CDK2 phosphorylation on
Xic2 stability, we mutated the three possible CDK con-
sensus sites within Xic2 individually and in combination
to alanine to prevent phosphorylation (Figure 5B, C, D).
Mutation of residue Thr-58 (T58) had little effect on
Xic2 turnover, while mutation of residues Ser-98 (S98)
or Ser-131 (S131) both resulted in more efficient prote-
olysis of Xic2 (Figure 5C). Additionally, mutation of S98
abolished phosphoform 1 of Xic2 suggesting that phos-
phorylation of Xic2 at residue 98 is responsible for the
shifted phosphoform 1 of Xic2 in the interphase extract
(Figure 5C). Simultaneous triple mutation of Xic2 at res-
idues T58, S98, and S131 resulted in a Xic2 mutant that
did not exhibit a shift and was efficiently degraded in
the interphase extract compared to wildtype Xic2 (18%
Xic2 remaining for the T58A, S98A, S131A mutant
compared to 75% remaining for WT Xic2) (Figure 5D).
We further generated glutamic acid mutations of Xic2 at
residues S98 and S131 to mimic constitutive phosphoryl-
ation and tested these Xic2 mutants for turnover. Our
studies indicated that the Xic2-S98E, S131E double mu-
tant and the S98E and S131E single point mutants were
all degraded similarly or less efficiently than the wildtype
Xic2 that is phosphorylated in the extract (Xic2 WT and
the E mutants are degraded to approximately 50% of
Xic2 remaining, Figure 5E, versus 18% for the Xic2 triple
alanine mutant that is not phosphorylated, Figure 5D).
This result is consistent with our hypothesis that Xic2
phosphorylation in the extract inhibits its turnover.
Taken together, these studies suggest that CDK2-
dependent phosphorylation of Xic2 at residues S98 and
S131 negatively regulates its ubiquitination and degrad-
ation during interphase.

Xic2 is hyperphosphorylated at residues S78/S81 in a
manner dependent upon single-stranded DNA and a
caffeine-sensitive kinase

In the interphase egg extract, in addition to the DNA-
independent phosphorylation of Xic2 by CDK2-cyclin
(Figures 2 and 5, phosphoform 1), we have also observed
an additional DNA-dependent shift in the presence of
single-stranded DNA (Figure 2, B and C, phosphoforms
2). The DNA-dependent phosphorylation of Xic2 causes a
doublet of Xic2 to appear in the presence of single-
stranded DNA with a slower migration than phosphoform
1 resulting from CDK2 phosphorylation of residue S98



Zhu et al. Cell Division 2013, 8:5 Page 8 of 14
http://www.celldiv.com/content/8/1/5

A HSS B PCNA

DMSO | ROSC GST | GST-hp27 CDK binding binding
ssDNA: + + + —|+ + + —|+ + + —|+ + + — ! ] II :
TIME (HR): 0153 3|0153 3|0153 3|0153 3 1 T58 898 gy5 138

Xic2 CDK consensus sites

T58 FATETPLEGQ
S98 RCNISPSSKA
$131 KRRCSPVPSL

XIC2-(UB)n

;..I!...,,,'....,.Jxm

% XIC2
REMAINING: 71 15 72 19
C Lss D LSS
iz wr | Tsea | sesa | st31a we | M
XECiy + ¥ =+ # =l vl s < XSC: + + + + — |+ + + + —
TIME (HR): 0 1.5 3 3[0153 3|0153 3[0153 3 TIMEHR): 0 1 2 3 3[0o 12 3 3
o
c o
o 2
=) &y
3 3
S =3
X
Shb il o L L
gee PP & XIic2 >
.1 » - Begnods ! :l % XIC2
% XIC2 REMAINING: 75 18
REMAINING: 72 67 43 51
E WT S98E S131E S98E,S131E
SSDNA: + + + — + + + — + + + — + + + —
TIME(hr): 0153 3 0153 3 0153 30153 3
LR T AT e e g xic2
100
80
=]
£
£
© 60
£
2}
S 40 | BWT
% —A— S9BE
o
20 | -@-S13E
-©- S98E,S131E
0
0 1.5 3
Time (hr)

Figure 5 Phosphorylation of residue S98 by CDK2 stabilizes Xic2. A. Degradation assay. **S-labeled Xic2 was incubated in HSS with buffer
control (DMSQ), TmM roscovitine (ROSC), GST (10uM), or GST-hp27 (10uM) with (+) or without (—) ©X174 (ssDNA, 10ng/ul). The mean percentage
of Xic2 remaining from two independent experiments is shown (% Xic2 remaining) where the zero hour time point was normalized to 100%.

B. Schematic representation of Xic2 and S/T-P consensus sites. C. Xic2 degradation assay. *°S-labeled Xic2 wildtype (WT) or CDK phosphorylation
mutants (T58A, S98A, or S131A) were incubated in LSS with (+) or without (=) XSC (10ng/ul). The mean percentage of remaining Xic2 from three
independent experiments is shown (% Xic2 remaining) where the zero hour time point was normalized to 100%. D. Xic2 degradation assay.
3S-labeled Xic2 wildtype (WT) or triple-mutant (T58A, S98A, S131A) was incubated in LSS with (+) or without (=) XSC (10ng/ul) for 0 to 3 hrs as
indicated. The mean percentage of remaining Xic2 from three independent experiments is shown (% Xic2 remaining) where the zero hour time
point was normalized to 100%. E. Xic2 degradation assay. Top panel: **S-labeled Xic2 wildtype (WT) or glutamic acid phosphomimetic E mutants
(S98E, S131E, or S98E/S131E) were incubated in HSS with (+) or without (—) 10 ng/ul ssDNA (ssDNA) for 0 to 3 hrs as indicated. Bottom panel: The
percentage of Xic2 remaining was calculated for each sample where the zero hour time point was normalized to 100%. Error bars (Standard error
of the mean) are shown. P values were calculated by student t-test comparing each sample with wildtype Xic2 (WT). 1.5 hr p values: S98E (0.115),
S131E (0.310), and S98E/S131E (0.015). 3 hr p values: S98E (0.370), S131E (0.603), and S98E/S131E (0.172). For all figures, the ubiquitinated Xic2
protein bands are indicated as “XIC2-(UB)n".




Zhu et al. Cell Division 2013, 8:5
http://www.celldiv.com/content/8/1/5

(Figure 2B, C, D and Figure 5). Previous studies have indi-
cated that single-stranded DNA in the interphase egg ex-
tract is replicated to form double-stranded DNA ends
which trigger activation of the checkpoint kinase, Ataxia
Telangiectasia-related protein (ATR), and induce the
phosphorylation of Chk2 [32,33]. Consistent with these
previous findings, we observed that the timing of the
ssDNA-dependent mobility shift of Xic2 coincided with
the appearance of a Chk2 shift in the presence of double-
stranded DNA (dsDNA) ends (Figure 6A). Moreover, the
Xic2 shifts observed in the presence of ssDNA or repli-
cated dsDNA ends (phosphoforms 2) was prevented by
the addition of caffeine, a known inhibitor of Class IV
Phosphatidylinositol 3-kinases (PI 3-kinases or PI3Ks)
such as ATR [32,33], suggesting that an ATM/ATR-like

Page 9 of 14

kinase may be responsible for phosphorylating Xic2 in the
presence of ssDNA (Figure 6B). We also noted a modest
increase in Xic2 turnover in the presence of caffeine per-
haps indicating that the phosphorylation of Xic2 in the
presence of ssDNA may be partially stabilizing (Figure 6B).
To further characterize the modification of Xic2 in the
presence of ssDNA, we examined Xic2 in the presence of
a variety of DNA templates in the Xenopus interphase egg
extract. Our studies showed that Xic2 did not exhibit the
“phosphoforms 2” modification in the presence of buffer,
XSC, or uncut plasmid DNA (Figure 6C). In contrast,
Xic2 phosphoforms 2 were observed to varying degrees in
the presence of ssDNA, nicked dsDNA, UV-damaged
DNA, and linearized plasmid DNA (Figure 6C). These
studies suggest that damaged DNA templates or DNA
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templates which mimic damaged DNA activate a caffeine-
sensitive kinase that phosphorylates Xic2. Notably, in the
presence of aphidicolin, these caffeine-sensitive modifica-
tions of Xic2 are inhibited (Figure 3A).

An examination of the potential sites targeted for phos-
phorylation of Xic2 in the presence of ssDNA revealed
two residues at S78 and S81 that matched the S/T-Q con-
sensus site for ATM-ATR-like kinases (Figure 6D, top).
Mutation of these two residues to alanine (S78A, S81A)
completely eliminated the Xic2 phosphoforms 2 in the
presence of ssDNA compared to wildtype Xic2 (Figure 6D,
bottom, samples for “S78A, S81A” and “S78A, S81A,
S98A”). Phosphorylation of Xic2 by the caffeine-sensitive
kinase in the presence of ssDNA does not appear to be
dependent upon prior or concurrent phosphorylation of
Xic2 by CDK2-cyclin as shown by the shift of a Xic2-
S98A mutant (Figure 6D) and by the ability of Xic2 to be
phosphorylated in an ssDNA-dependent manner in the
presence of roscovitine (data not shown). This suggests
that the interphase phosphorylation of Xic2 by CDK2 and
the caffeine-sensitive kinase function along independent
pathways.

Discussion

In the initial description of Xic2, the expression of Xic2
RNA was described to be initially low during stages 10-11,
increasing at stage 18, with the highest expression at stage
25 with staining appearing predominantly in the develop-
ing somite, tail bud, lens, and cement gland suggesting a
role in developmental patterning (Figure 7B, top) [11].
This is in contrast to the expression of Xicl which is ob-
served earlier during development and increases signi-
ficantly following gastrulation (Figure 7B, top) or the
expression of Xic3 that is very low until after stage 28 with
a peak at stage 38 indicating that Xic3 functions during
late embryonic patterning (Figure 7B, top) [11,12,14,16,24].
Xic3 was found to be stable in the interphase egg extract
suggesting that the machinery or regulators that control
Xic3 stability may not be appreciably expressed or acti-
vated in the Xenopus egg.

Our studies suggest that like mammalian p21, Xic2
protein levels appear to be induced upon treatment with
IR [26]. This result suggests that in addition to a role in
development, Xic2 may also play a role in a DNA dam-
age checkpoint with Xic2 levels increasing during DNA
damage, similar to Xicl, to presumably halt entry into S
phase to allow DNA repair to occur (Figure 7B, bottom
right) [34]. Consistent with this hypothesis, Xic2 appears
to be phosphorylated by a caffeine-sensitive kinase in
the presence of double-stranded DNA ends, a signal
shown to activate a DNA damage checkpoint in the
interphase egg extract [32,33] (Figure 7A). Under the
same conditions, XCdsl (Xenopus Chk2) has been
shown to be phosphorylated and this phosphorylation is
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inhibited by a block to DNA replication and by caffeine
suggesting Xic2 may be modulated by the same check-
point pathway as XCdsl [32]. How the phosphorylation
of Xic2 at residues S78 and S81 may influence its CDK2
inhibitory activity or binding to CDK2 and PCNA are
currently under further investigation.

The fact that Xic2 is readily ubiquitinated and de-
graded in the interphase egg extract when CDK2 phos-
phorylation is inhibited suggests that the ubiquitination
machinery that targets Xic2 for degradation is present in
the egg. Our past studies of the Xenopus interphase egg
extract suggest that the CRL4“? ubiquitin ligase is
active in the extract while the SCFSP? ubiquitin ligase
is not due to very low expression of Skp2 in the egg
[20,24]. Our results demonstrating the dependence of
Xic2 proteolysis on PCNA and DNA, the timing of Xic2
ubiquitination and degradation, and the ability of Cdt2
to promote Xic2 turnover are all consistent with
CRL4“? being the ubiquitin ligase of Xic2 in the egg
extract. It is then somewhat puzzling that Xic2 does not
readily bind to Cdt2 under conditions that efficiently
support Xicl and Cdt2 binding. Similar to p21 and Xicl,
Xic2 bears the “specialized PIP box” described by Ha-
vens and Walters [29,35] which contains a PIP box that
binds PCNA with high affinity (contains the TD motif)
followed by a basic residue at the +4 position relative to
the PIP box. Our findings suggest that Xic2 may more
closely resemble the replication protein and CRL4“‘"
substrate, Cdtl, in requiring the presence of DNA to
appreciably bind to Cdt2. However, unlike Cdtl, Xic2
readily binds PCNA in the absence of DNA. It is also
possible that Xic2 is only indirectly targeted by Cdt2 or
that Xic2 is additionally targeted by an alternative E3 in
the egg extract, although our studies indicated that the
addition of Skp2 did not promote Xic2 turnover. It is in-
teresting to note that sequence analyses revealed a KEN
box present in both Xic2 (**KENQCQD®) and Xicl
("® KENAEKI'**) suggesting that Xic2 and Xicl may be
targeted for ubiquitination by the ubiquitin ligase,
APC“™ However, Cdhl expression in the Xenopus egg
is very low and it is not appreciably expressed until after
gastrulation [36].

Using the Xenopus model extract system, we have evi-
dence to support that Xic2 is phosphorylated in a CDK2
dependent manner, most likely by CDK2-cyclin E, the
predominant CDK activity in the interphase egg extract
[31] (Figure 7A). The phosphorylation of Xic2 at resi-
dues S98 and S131 appear to equally inhibit the
ubiquitination and degradation of Xic2 in the extract.
The inhibition of Xic2 turnover by CDK2 phosphory-
lation may be due to a change in the cell localization of
Xic2 upon phosphorylation although this is unlikely to
be the predominant contributing factor since our deg-
radation studies using the HSS extract which does not
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contain nuclear membrane precursors and does not
support nuclei formation [37] still showed that CDK2
phosphorylated Xic2 was inhibited for degradation.
Alternatively, Xic2 phosphorylation by CDK2 may influ-
ence the binding of Xic2 to PCNA, DNA, or the
ubiquitination machinery. The finding that CDK2 phos-
phorylation of Xic2 inhibits its PCNA-dependent turn-
over suggests that Xic2 phosphorylation may be an
important regulator of Xic2 stability and function.

Conclusions

In this study, we provide the first biochemical examin-
ation of the regulation of the Xenopus CDK inhibitors,
p16X°? and p17%', using the egg extract model system.
Our studies indicate that Xic2 is targeted for DNA- and
PCNA-dependent ubiquitination and degradation in the
interphase egg extract and that this turnover of Xic2 is
promoted by Cdt2 and inhibited by CDK2-dependent
phosphorylation of Xic2 at residues Ser-98 and Ser-131.
Additionally, it appears that during conditions mimick-
ing a DNA damage checkpoint, Xic2 is targeted for
phosphorylation by a caffeine-sensitive kinase at residues
Ser-78 and Ser-81, although the consequence of this
phosphorylation is still unclear. Xic3 appears to be stable
in the interphase egg extract in the presence or absence
of DNA.

In their initial discovery of Xic2, Daniels et al. [11] de-
scribed Xic2 as an ortholog of mammalian p21 which is
known to be transcriptionally induced by p53 upon
DNA damage. p21 has also been shown to be a substrate
of both CRL4“Y2? and SCF5*P? [38-40]. The RNA expres-
sion pattern of Xic2 in somites, the tail bud, the lens,
and the cement gland suggest that Xic2 protein is
expressed during late embryonic development [11], but
how Xic2 protein may be regulated by proteolysis during
development remains unknown. It will be important to
study how Xic2 may be regulated by PCNA, CRL4“"?,
or CDK2 during developmental patterning. It will also
be necessary to study Xicl, Xic2, and Xic3 and their reg-
ulators in the context of the developing embryo and the
somatic cell to fully understand how these three Xenopus
CDK inhibitors mediate the events of early development
and cell cycle control in the frog.

Methods

Preparation of Xenopus extracts and demembranated
sperm chromatin

Xenopus interphase extracts [low speed supernatant
(LSS) and high speed supernatant (HSS)] [23], stable
A90 mitotic extract (LSS supplemented with A90 non-
degradable cyclin B), and demembranated Xenopus
sperm chromatin (XSC) [19,41,42] were prepared as pre-
viously described. All studies involving animals were
conducted according to the rules established by the
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Universities of Federation for Animal Welfare, the
World Society for the Protection of Animals Working
Party, and the American Veterinary Medical Association.
This work was approved by the Institutional Animal
Care and Use Committee of the University of Texas
Health Science Center at San Antonio which is
accredited by the Association for Assessment and Ac-
creditation of Laboratory Animal Care under protocols
990451-04-06-A and 11073x.

Cell culture

Xenopus Tissue Culture (XTC) cells were propagated at
room temperature in L-15 medium with L-glutamine
(Sigma-Aldrich) supplemented with 10% fetal bo-
vine serum (Gibco-BRL) and 50 ug/ml of penicillin-
streptomycin (Gibco-BRL). Cells were irradiated with 10
Gy using a '*’Cesium source Mark I Model 68A irradia-
tor and harvested 4 and 8 hours later in RIPA buffer
(10 mM Tris-Cl, pH 8.0, ImM EDTA, 0.15 M NaCl, 1%
Np-40 and 1% Sodium Deoxycholate) containing prote-
ase inhibitors (Sigma, P8340).

Generation of Xic2 mutants and other constructs

All point mutants of Xic2 in pCS2+ were generated
by using pCS2+-Xic2 as the template and the
QuickChange™ Site-Directed Mutagenesis Kit (Strata-
gene) followed by DNA sequencing to confirm the
mutagenesis. Mutagenesis primer sequences are avail-
able upon request. pGEX4T-Xic2 was generated by
subcloning a PCR fragment of Xic2 using pCS2+-Xic2
as the template into the BamHI and Sall restriction sites
of pGEX4T-1.

Production of Xic2 antibody and other antibodies
GST-Xic2 expressed in BL21Star (DE3) was purified
using Glutathione-Sepharose 4B beads (Amersham Bio-
sciences) according to the manufacturer’s instructions.
Rabbit polyclonal antibody against GST-Xic2 was gener-
ated by the University of Texas Health Science Center at
San Antonio SACI antibody core facility. Anti-PCNA
mouse monoclonal antibody was purchased from Santa
Cruz (P-10) and anti-GST-XCyclin E antibody was a gift
from Peter K. Jackson and Marc W. Kirschner.

In vitro transcription and translation

In vitro transcription and translation reactions were
performed using the SP6 TNT coupled reticulocyte
lysate system (Promega) and *°S-methionine from New
England Nuclear.

Dephosphorylation and inhibition assays

Dephosphorylation of protein samples was performed
using lambda phosphatase (A-PPase) (New England Biolab,
P0753S). Reactions were incubated at 30°C for 30 min in
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the presence of 80 or 200 units of A\-PPase, terminated by
the addition of protein loading dye, and analyzed by SDS-
PAGE and phosphorimager. Roscovitine (A. G. Scientific
Inc, R-1016) was used as previously described to inhibit
CDK?2 activity [21]. Caffeine (Sigma) was used at a final
concentration of 10 mM from fresh stocks of 75 mM in
XB- (100 mM KCI, 1 mM MgCl,, 0.1 mM CaCl,, 10 mM
HEPES pH 7.7).

GST pull down assays, immunoblotting, and
immunoprecipiation

GST pull down assays using egg extract and immuno-
blotting were performed as previously described except
the binding reactions were conducted at 4°C for 2 hours
[21,22]. Rabbit serum against Xic2 was used to immuno-
precipitate and immunoblot Xic2 in extracts. Anti-cyclin
E antibody was used to immunoprecipiate cyclin E from
extracts while anti-PCNA antibody was used for immu-
noblots. Normal rabbit serum was used as a control for
immunoprecipitations.

Degradation assay, nuclei spin down assay, and
phosphorylation shift assay

Degradation assays were performed as previously des-
cribed [21] with the following modifications. Proteins la-
beled with **S-methionine were added to extracts at a final
dilution of 1:15 in the presence or absence of 10 ng/ul
demembranated XSC or ®X174 single-stranded DNA
(New England Biolab, N3023S). The reactions were ana-
lyzed by Phosphorlmager and quantitation was performed
using ImageQuant™ software (Molecular Dynamics). The
percentage of protein remaining for each sample was de-
termined by normalizing the amount of protein at the 0 hr
time point to 100%. Nuclei spin down assays were per-
formed as previously described [23,24] with the following
minor modifications. LSS was incubated with ubiquitin
(3 ug/ul), 355_methionine labeled Xic2 at a final dilution of
1:15, and XSC (10 ng/ul) for 90 min at 23°C. When indi-
cated, methyl ubiquitin was added to a final concentration
of 3 ug/ul. Ubiquitin (Sigma) was methylated as previously
described [25]. In vitro translated Chk2 (XCds1-pCS2+) or
Xic2 was added to HSS and incubated for 0 to 3 hours in
the presence or absence of double-stranded DNA ends
that were generated from annealed oligonucleotides [43].
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