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than 70% of new cases occurring in Southeast and East 
Asia [3, 4]. Several factors, such as environmental influ-
ences, Epstein Barr virus (EBV) infection, dietary hab-
its and genetic susceptibility, have been demonstrated 
to drive the progression and development of NPC [1]. 
However, its pathogenesis still needs to be further elu-
cidated. The 10-year survival rate of patients with NPC 
diagnosed at the early stage has been improved through 
the radiotherapy and chemotherapy, standard treatment 
paradigms for NPC [5, 6]. However, most patients (more 
than 70%) are diagnosed in the advanced stage because 
NPC patients at the early stage often exhibit asymptoms 

Introduction
Nasopharyngeal carcinoma (NPC) originates from the 
nasopharynx mucosal epithelium, is characterized with 
early lymphatic spread, rapid local invasion and distant 
metastasis [1, 2]. 96,371 new cases and 58,094 deaths of 
NPC are reported in 2020 around the world, with more 
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Abstract
Background  Nasopharyngeal carcinoma (NPC) is a malignant tumor with poor survival rate. G2 and S phase-
expressed‐1 (GTSE1) takes part in the progression of diverse tumors as an oncogene, but its role and potential 
mechanism in NPC remain unknown.

Methods  The GTSE1 expression was analyzed by western blot in NPC tissues and cells. Knock-down experiments 
were conducted to determine the function of GTSE1 in NPC by cell counting kit-8, the 5-ethynyl-2′-deoxyuridine 
(EdU) incorporation experiment, cell scratch wound-healing experiment, transwell assays, tube forming experiment 
and western blot. In addition, the in vivo role of GTSE1 was addressed in tumor-bearing mice.

Results  The expression of was increased in NPC. Silencing of GTSE1 suppressed cell viability, the percent of EdU 
positive cells, and the number of invasion cells and tubes, but enhanced the scratch ratio in NPC cells. Mechanically, 
downregulation of GTSE1 decreased the expressions of FOXM1 and STMN1, which were restored with the 
upregulation of FOXM1. Increased expression of STMN1 reversed the effects of the GTSE1 silencing on proliferation, 
migration, invasion and angiogenesis of NPC cells. Furthermore, knockdown of GTSE1 repressed the tumor volume 
and tumor weight of xenografted mice.

Conclusion  GTSE1 was highly expressed in NPC, and silencing of GTSE1 ameliorated the malignant processes of NPC 
cells by upregulating STMN1, suggesting a possible therapeutical target for NPC.
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or atypical symptoms. Thus, despite the advance on these 
therapies, the survival rate of NPC patients remains poor. 
Moreover, toxicity and side effects of radiotherapy and 
chemotherapy are huge obstacles to the quality of life of 
NPC patients [7]. Therefore, identifying new therapeu-
tic targets is critical for the development of the diagnosis 
and treatment of NPC.

G2 and S phase-expressed‐1 (GTSE1), located on chro-
mosome 22q13.2‐q13.3, is a microtubule‐localized pro-
tein, expressed specially during the cell cycle S and G2 
phases [8, 9]. GTSE1 is regulated by P53, and in turn neg-
atively modulates the P53 activity via binding to its C‐ter-
minal regulatory domain, thereby decreasing apoptosis in 
a P53‐dependent fashion [10–12]. Thus, GTSE1 has been 
revealed to be closely related to the process of different 
tumors. GTSE1 has been revealed as a biomarker for the 
immunosuppressive tumor microenvironment based 
on a pan-cancer analyses [13], and high expression of 
GTSE1 is associated with poor patient survival in many 
cancer types, such as bladder cancer [14], acral mela-
noma [15], hepatocellular carcinoma [16, 17], lung cancer 
[18], clear cell renal cell carcinoma [19, 20], non-small-
cell lung cancer [21], cervical cancer [22], and breast can-
cer [23]. Moreover, GTSE1 is identified to participate in 
the proliferation, migration, and invasion of bladder can-
cer [14]. acral melanoma [15], hepatocellular carcinoma 
[17], lung cancer [18], clear cell renal cell carcinoma [20], 
and non-small-cell lung cancer [21]. The role of GTSE1 
in drug resistance is shown in gastric cancer cells [24], 
osteosarcoma [25], breast cancer [23], clear cell renal cell 
carcinoma [19], and non-small-cell lung cancer [26]. In 
addition, GTSE1 is demonstrated to be involved in apop-
tosis in clear cell renal cell carcinoma [20], gastric cancer 
cells [24] and esophageal squamous cell carcinoma [27], 
and it was also involved in Warburg effect in cervical can-
cer [28].Furthermore, GTSE1 has been identified to be 
upregulated in head and neck squamous cell carcinoma 
(HNSC) [13], and GTSE1 can act as one of nine genes 
contributing to build the model for the prognostic risk 
prediction of HNSC [29], which indicated that GTSE1 
might be involved in the progression of NPC.

Thus, to address whether GTSE1 was consistently 
highly expressed in NPC and whether it is involved in 
the malignant process of NPC, such as proliferation, 
migration, invasion and angiogenesis, in vitro and in vivo 
experiments were conducted in the present study. The 
findings demonstrated that NPC cells expressed high lev-
els of GTSE1, and GTSE1 knockdown suppressed prolif-
eration, mobility, invasion and angiogenesis of NPC cells 
by upregulating STMN1. This is the first time to uncover 
the role of GTSE1 in NPC, providing a potential thera-
peutic target for NPC.

Results
GTSE1 was strongly expressed in NPC
According to an analysis using tumor tissues from NPC 
patients, the expression of GTSE1 was considerably 
upregulated in NPC samples when compared to con-
trol samples (Fig.  1a). Also, the relative protein expres-
sion of GTSE1 was consistently and noticeably increased 
(Fig.  1b) in NPC cell lines (C666-1 and SUNE-1 cells). 
Thus, the level of GTSE1 was increased in NPC.

GTSE1 knockdown slowed the growth of NPCs
Two siRNAs targeting GTSE1 (si-GTSE1#1 and si-
GTSE1#2) were transfected into C666-1 and SUNE-1 
cells to downregulate the level of GTSE1 in order to 
investigate the role of GTSE1 in the progression of NPC. 
Both siRNAs targeting GTSE1 markedly decreased the 
relative protein expression of GTSE1 in C666-1 and 
SUNE-1 cells (Fig.  2a). Two siRNAs targeting GTSE1 
transfected into C666-1 and SUNE-1 cells drastically 
reduced the number of EdU positive cells and the cell 
viability (Fig.  2b and c). Therefore, downregulation of 
GTSE1 suppressed proliferation of NPCs.

Silencing of GTSE1 attenuated migration, invasion and 
angiogenesis of NPC cells
Then, C666-1 and SUNE-1 cells were transfected with si-
GTSE1#1 and si-GTSE1#2 to address the role of GTSE1 
in migration, invasion and angiogenesis. Transfection 
of both two siRNAs targeting GTSE1 into C666-1 and 
SUNE-1 cells caused a prominent increase in the scratch 
ratio (Fig. 3a), but a remarkable decrease in the numbers 
of invasive cells and numbers of tubes (Fig.  3b and c). 
Together, downregulation of GTSE1 suppressed migra-
tion, invasion and angiogenesis of NPC cells.

GTSE1 upregulated the expression of STMN1 via FOXM1
Mechanically, FoxM1 is a transcriptional factor that plays 
important roles in the progression and development of 
various cancers, including NPC [30]. Thus, the level of 
FOXM1 was detected in NPC by western blot. The rela-
tive protein level of FOXM1 was notably decreased in 
both cells transfected with si-GTSE1#1 and si-GTSE1#2 
(Fig.  4a). Moreover, STMN1 has been demonstrated to 
be essential for FoxM1-mediated proliferation of cancer 
cells, such as hepatocellular carcinoma cells, gastric can-
cer cells and colorectal cancer cells [31]. Here, we also 
found that transfection of both two siRNAs targeting 
GTSE1 into NPC cells evoked a conspicuous reduction in 
the relative protein level of STMN1 (Fig. 4b). To further 
investigate the role of FOXM1/STMN1 axis in si-GTSE1-
mediated NPC cells, FOXM1 was overexpressed in both 
cells combined with the transfection of si-GTSE1#1. 
When si-GTSE1#1 was transfected into C666-1 and 
SUNE-1 cells, the relative protein expression of FOXM1 
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and STMN1 was notably diminished. However, FOXM1 
overexpression significantly enhanced this expres-
sion (Fig. 4c and d). Altogether, GTSE1 upregulated the 
expression of STMN1 through FOXM1.

GTSE1 promoted the malignant progression of NPC by 
upregulating STMN1
In order to validate the function of STMN1 in GTSE1-
mediated advancement of NPC, si-GTSE1#1-trans-
fected C666-1 cells were used to overexpress STMN1. 
Transfection of si-GTSE1#1 into C666-1 cells signifi-
cantly reduced cell viability and enhanced the scratch 
ratio, which was prominently reversed with the STMN1 
overexpression (Fig.  5a and b). Besides, the decrease in 
the numbers of invasive cells and numbers of tubes in 
C666-1 cells transfected with si-GTSE1#1 was markedly 
restored with the overexpression of STMN1 (Fig. 5c and 
d). Totally, GTSE1 enhanced the malignant progression 
of NPC through upregulating STMN1.

Knockdown of GTSE1 inhibited the growth of NPC cells in 
vivo
Furthermore, the function of GTSE1 was evaluated in 
vivo by the subcutaneous inoculation of C666-1 cells 
transfected with sh-GTSE1 into nude mice. When com-
pared to the mice with sh-NC, the tumor weight and 
volume were much lower in the GTSE1 knockdown 
mice (Fig. 6a). In addition, the expression level of Ki-67, 
FOXM1 and STMN1 in the GTSE1 knockdown mice 

was reduced compared with sh-NC mice (Fig. 6b). Thus, 
GTSE1 knockdown repressed the growth of NPC cells in 
vivo.

Discussion
Nasopharyngeal carcinoma has a poor prognosis in 
southern China and Southeast Asia. To further improve 
the diagnosis and treatment of NPC, it is crucial to dis-
cover novel therapeutic targets. The function and mecha-
nism of GTSE1 in NPC were investigated in the current 
study. The expression of GTSE1 was elevated in NPC 
tissues and cells. NPC cells invasion, migration, prolif-
eration, and angiogenesis were all inhibited by GTSE1 
knockdown. Mechanically, FOXM1 and STMN1 expres-
sion was downregulated by GTSE1 knockdown, but this 
was restored by FOXM1 overexpression. The function of 
GTSE1 silencing on the malignant development of NPC 
cells was reversed by overexpression of STMN1. Fur-
thermore, the tumor volume and weight of xenografted 
mice were reduced by GTSE1 knockdown. Together, 
downregulation of GTSE1 repressed proliferation, migra-
tion, invasion and angiogenesis of NPC by upregulating 
STMN1.

A recent pan-cancer analysis revealed that GTSE1 is 
upregulated in different tumors, such as bladder cancer, 
breast cancer, colon adenocarcinoma, cholangiocarci-
noma, cervical squamous cell carcinoma, glioblastoma 
multiforme, esophageal carcinoma, kidney renal papil-
lary cell carcinoma, kidney chromophobe, kidney renal 

Fig. 1  GTSE1 was highly expressed in NPC. (a) The relative protein expression of GTSE1 in tumor tissues from NPC patients was detected by western blot. 
Data were normalized with β-actin. (b) The relative protein expression of GTSE1 in NPC cell lines was detected by western blot. Data were normalized 
with β-actin. ***p < 0.001 vs. NP69
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clear cell carcinoma, lung squamous cell carcinoma, lung 
adenocarcinoma, liver hepatocellular carcinoma, rectum 
adenocarcinoma, prostate adenocarcinoma, stomach 
adenocarcinoma, Sarcoma, uterine corpus endometrial 
carcinoma, thyroid carcinoma, as well as HNSC based 
on the data from TCGA [13]. Similar to this finding, our 
results demonstrated that the GTSE1 level was increased 
in NPC tissues and cells. Upregulation in the level of 
GTSE1 in NPC suggested that GTSE1 might play a role 
in the progression and development of NPC. Knock-
down results showed that downregulation of GTSE1 sup-
pressed proliferation, mobility, invasion and angiogenesis 
of NPC cells, and also inhibited the tumor growth in the 
NPC xenografted mice. Similar results was observed that 
silencing of GTSE1 represses cell proliferation, mobility 
and invasion have been reported in non-small-cell lung 

cancer cells [21], clear cell renal cell carcinoma [19, 20], 
esophageal squamous cell carcinoma [27], colon cancer 
[32], bladder cancer [14], acral melanoma [15], and hepa-
tocellular carcinoma [17]. Collectively, knockdown of 
GTSE1 attenuated growth, mobility, invasion and angio-
genesis of NPC cells.

Several studies have revealed that GTSE1 upregulates 
the expression level of FOXM1. Lai et al. [33] report that 
GTSE1 positively regulated the transcriptional level of 
FOXM1, downstream factors of FOXM1 (CCNB1 [34] 
and CCND1 [35]), and transcription factors of FOXM1 
(HIF-1α [36], SP1 [37], and E2F1 [38]), and shFOXM1 or 
the FOXM1 inhibitor reverses the pro-proliferation effect 
of GTSE1 in prostate cancer. Liu and colleagues [14] 
reveal that knockdown of GTSE1 reduces the expression 
of FOXM1 and CCNB1 in bladder cancer, indicating that 

Fig. 2  Knockdown of GTSE1 suppressed the NPC proliferation. Two siRNAs targeting GTSE1 (si-GTSE1#1 and si-GTSE1#2) were transfected into C666-1 
and SUNE-1 cells to downregulate the level of GTSE1. (a) The relative protein expression of GTSE1 was detected by western blot. Data were normalized 
with β-actin. (b) Examination of cell viability by CCK-8. (c) Measurement of the percent of EdU positive cells by Edu staining. Scale bar = 100 μm. **p < 0.01 
and ***p < 0.001 vs. si-NC
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GTSE1 positively modulates the expression and level of 
FOXM1. Here, silencing of GTSE1 decreased the expres-
sion of FOXM1, in line with the above-mentioned studies. 
FOXM1 that is upregulated in NPC has been identified 
as potential therapeutic and prognostic marker of NPC 
[39, 40], which participates in the malignant progress 
of NPC, including cell cycle progression, proliferation, 
migration, invasion, apoptosis, angiogenesis, stemness, 
glycolysis, metastasis, and resistance [30, 41–50]. More-
over, FOXM1 directly binds to and positively regulates 
the expression of STMN1, which drives the tumorigen-
esis [31]. AKT/FOXM1/STMN1 axis in lung cancer also 
contributes to resistance to tyrosine kinase inhibitors 

[51]. In the current study, the decreased expression level 
of STMN1 caused by the downregulation of GTSE1 in 
NPC cells was recovered with the FOXM1 overexpres-
sion, consistently suggesting that FOXM1 positively 
modulated the level of STMN1 in NPC cells. STMN1, a 
microtubule-binding protein, binds to α/β-Tubulin het-
erodimers, thereby promoting the dissociation of micro-
tubules or assembly suppression of microtubules [52]. 
STMN1, upregulated in NPC, is an independent prog-
nostic factor in NPC [53], which is associated with drug 
resistance of NPC [54, 55], and radioresistance [56]. Fur-
thermore, STMN1 participates in the proliferation, apop-
tosis, migration, and angiogenesis of NPC [57, 58]. Here, 

Fig. 3  Knockdown of GTSE1 reduced migration, invasion and angiogenesis of NPC cells. Two siRNAs targeting GTSE1 (si-GTSE1#1 and si-GTSE1#2) were 
transfected into C666-1 and SUNE-1 cells to downregulate the level of GTSE1. (a) The migration ability was assessed by the cell scratch wound-healing 
experiment. Scale bar = 100 μm. (b) The invasion ability was evaluated by transwell assays. Scale bar = 50 μm. (c) The angiogenesis ability was determined 
by the tube forming experiment. Scale bar = 100 μm. **p < 0.01 and ***p < 0.001 vs. si-NC
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downregulation of GTSE1 decreased the expression of 
STMN1, and overexpression of STMN1 reversed the 
effects of the GTSE1 silencing on growth, mobility, inva-
sion and angiogenesis of NPC cells. Therefore, the results 
demonstrated that downregulation of GTSE1 inhibited 
proliferation, mobility, invasion and angiogenesis of NPC 
by the upregulation of STMN1.

In summary, silencing of GTSE1 suppressed cell 
growth, mobility, invasion and angiogenesis of NPC by 
upregulating STMN1. However, several limitations still 
should be resolved in the future. Since GTSE1 has been 
identified to be strongly related to the prognosis of vari-
ous tumors, the role of GTSE1 in the NPC prognosis 
should be addressed in the following study by collecting 
the clinical data of NPC patients. Besides, the function 

Fig. 4  GTSE1 upregulated the expression of STMN1 by FOXM1. (a) The relative protein expression of FOXM1 was examined by western blot after C666-1 
and SUNE-1 cells were transfected with si-GTSE1#1 and si-GTSE1#2. Data were normalized with β-actin. *p < 0.05 and ***p < 0.001 vs. si-NC. (b) The relative 
protein expression of STMN1 was detected by western blot after C666-1 and SUNE-1 cells were transfected with si-GTSE1#1 and si-GTSE1#2. Data were 
normalized with β-actin. ***p < 0.001 vs. si-NC. (c) The relative protein expression of FOXM1 was determined by western blot after C666-1 and SUNE-1 
cells were transfected with si-GTSE1#1 and pcDNA vector plasmids containing FOXM1. Data were normalized with β-actin. ***p < 0.001 vs. si-NC + Vector; 
###p < 0.001 vs. si-GTSE1#1 + Vector. (d) The relative protein expression of STMN1 was assessed by western blot after C666-1 and SUNE-1 cells were trans-
fected with si-GTSE1#1 and pcDNA vector plasmids containing FOXM1. Data were normalized with β-actin. **p < 0.01 and ***p < 0.001 vs. si-NC + Vector; 
##p < 0.01 and ###p < 0.001 vs. si-GTSE1#1 + Vector

 



Page 7 of 12Dong et al. Cell Division           (2024) 19:16 

of GTSE1 on the other important malignant progres-
sion of NPC, such as apoptosis, glycolysis, metastasis, 
can be investigated in the further study. Moreover, the 
direct interaction between FOXM1 and STMN1 can be 
verify in NPC cells to solidify the results. Additionally, 
more experiments can be conducted to verify our conclu-
sion, such as clone formation experiments. Moreover, the 
specific regulatory mechanisms of GTSE1 on FOXM1/
STMN1 will be explored in the following study. Further-
more, the specific regulatory mechanisms of STMN1 on 
angiogenesis in NPC need to be explored in the future. 
Briefly, the results provide the pre-clinical evidence for 
the discovery of the potential target for the treatment of 
NPC.

Materials and methods
Tissue specimen
20 pair of tumor samples and adjacent para-carcinoma 
samples were collected from NPC patients at Ningbo 
Medical Center Lihuili Hospital. All of the patients were 
identified by pathological examination as having only 
one form of cancer. The Board and Ethics Committee of 
Ningbo Medical Center Lihuili Hospital approved this 
experiment (approval number: 2022 − 440), and each par-
ticipant provided the written informed consent.

Cell culture
Human nasopharyngeal epithelial cell line NP69 was 
acquired from Sigma-Aldrich (SCC197, St. Louis, MO, 
USA) and grown in keratinocyte serum-free media 
(17,005,042, Gibco, Rockville, MD, USA) with 10% fetal 
bovine serum (FBS, 10,082,147, Gibco) and 1% peni-
cillin-streptomycin (P/S) solution (PB180120, Procell) 

Fig. 5  GTSE1 promoted the malignant progression of NPC by upregulating STMN1. C666-1 cells were transfected with si-GTSE1#1 and pcDNA vector 
plasmids containing STMN1. (a) Examination of cell viability by CCK-8. (b) The migration ability was assessed by the cell scratch wound-healing experi-
ment. Scale bar = 100 μm. (c) The invasion ability was evaluated by transwell assays. Scale bar = 50 μm. (d) The angiogenesis ability was determined by 
the tube forming experiment. Scale bar = 100 μm. ***p < 0.001 vs. si-NC + Vector; ###p < 0.001 vs. si-GTSE1#1 + Vector
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Fig. 6  Knockdown of GTSE1 inhibited the growth of NPC cells in vivo. BALB/c nude mice were subcutaneously inoculated into the right flank with a total 
of 5 × 106 of C666-1 cells transfected with sh-GTSE1 or sh-NC. (a) Tumor volume was monitored every seven days for consecutive four weeks and quanti-
fied by the formula: volume = 1/2×length×width2. After four weeks, the tumors samples were excised and weighed. (b) The expression levels of Ki-67, 
FOXM1 and STMN1 were examined by immunohistochemistry. Scale bar = 100 μm. ***p < 0.001 vs. sh-NC
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in an incubator with 5% carbon dioxide (CO2) at 37  °C. 
NPC cell lines from American Type Culture Collection 
(ATCC, Manassas, VA, USA), such as C666-1 (ACS-
5006) and SUNE-1 (CRL-5971) were purchased and 
grown in RPMI-1640 (30-2001, ATCC) with 10% FBS and 
1% P/S at 37 °C with 5% CO2.

Cell transfection
GenePharma (Shanghai, China) created the small 
interfering ribonucleic acid (siRNA) against GTSE1 
(si-GTSE1) and the negative control (si-NC) to down-
regulate the level of GTSE1. The sequences of FOXM1 or 
STMN1 were introduced into pcDNA vector plasmids to 
upregulate the expression of FOXM1 or STMN1 based 
on the previous study [59]. C666-1 and SUNE-1 cells 
were transfected with si-GTSE1, si-NC, pcDNA vector 
plasmids containing FOXM1 (designated as FOXM1), 
pcDNA vector plasmids containing STMN1 (designated 
as STMN1), and the empty vector plasmids (designated 
as Vector) using Lipofectamine 3000 (L3000001, Invitro-
gen, Carlsbad, CA, USA). Cells were collected for ensur-
ing studies 48 h after the transfection. \.

Cell counting kit-8 (CCK-8) assay
A density of 5 × 103 transfected cells were seeded into 
96-well plates, where they were cultured at 37  °C with 
5% CO2. Each well was added with 10 µl CCK-8 reagents 
(CA1210, Solarbio, Beijing, China) and incubated for 
2 h at 37  °C to determine the cell viability as the previ-
ous description [60]. Using a microplate reader (Thermo 
Fisher Scientific, Waltham, MA, USA), the absorbance 
was measured at 450 nm.

The 5-ethynyl-2′-deoxyuridine (EdU) incorporation 
experiment
6 × 105 cells in each well were plated into 6-well plates, 
and the cells were cultured at 37  °C with 5% CO2. To 
assess the capacity for cell proliferation, the cells were 
stained using a BeyoClick™ EdU Cell Proliferation Kit 
with Alexa Fluor 647 (C0081S, Beyotime, Shanghai, 
China). Hoechst 33,342 (5 µg/mL, C0031, Solarbio) was 
used to identify cell nucleus. Fluorescence microscopy 
(Olympus, Tokyo, Japan) was used to capture the images.

Cell scratch wound-healing experiment
Transfected cells were seeded into 6-well plates at a 
density of 6 × 105 cells per well, and they were then cul-
tivated at 37  °C until the confluence reached 95%. The 
scratch wound was created using a 200-µL pipette tip. 
The images were captured using an inverted microscope 
(Olympus) after 24 h. The scratch ratio was defined as the 
ratio of the scratch width at 24 h and the scratch width at 
0 h.

Transwell assays
Transwell assays were used to measure the invasion of 
NPC cells based on the prior reports [61, 62]. Trans-
fected cells were resuspended into RPMI-1640 media at 
a density of 5 × 104 cells/well without FBS, and Matrigel 
(356,234, Solarbio) was then added to the upper cham-
ber of 24-well transwell plates (3422, Corning Company, 
New York, NY, USA). Media containing 10% FBS was 
distributed in the bottom chamber. A cotton swab was 
used to scratch the Matrigel after 24  h, and cells were 
subsequently fixed with 4% paraformaldehyde (P1110, 
Solarbio) and stained for 30 min with 0.1% crystal violet 
(G1062, Solarbio). An inverted microscope (Olympus) 
was used to capture images of the cells, and 10 randomly 
selected fields were used to tally the numbers of invaded 
cells.

Tube forming experiment
Transfected NPC cells were cultured and the superna-
tant was isolated to incubate with human umbilical vein 
endothelial cells (HUVECs, C0035C, Gibco) with 5% CO2 
at 37 °C. 50 µL supernatant containing Matrigel (M8371, 
Solarbio, diluted with supernatant at a ratio of 1:1) was 
plated into the 96-well plate, and then the 96-well plate 
was solidified in an incubator at 37 ℃. Subsequently, 
100 µL HUVECs with a density of 3 × 105 cells/mL were 
inoculated into the 96-well plate, and hatched at 37 ℃ 
for 4 h. ImageJ software (version 2.02, National Institutes 
of Health, USA) was used to assess the numbers of tubes 
after the images were captured using an Olympus micro-
scope for photography.

Animal experiment
Shanghai SLAC Laboratory Animal Co., LTD (Shang-
hai, China) supplied four-week-old BALB/c nude mice 
(4 weeks old). The mice were housed in a 12-hour light-
dark cycle with a regulated temperature of 22–23˚C 
and fed under specified pathogen free (SPF) conditions. 
After two weeks, mice were randomly assigned into 
sh-NC group and sh-GTSE1 group with five mice in 
each group. A total of 5 × 106 of C666-1 cells [63] trans-
fected with the short hairpin RNA (shRNA) targeting 
to GTSE1 (sh-GTSE1) (GenePharma) were subcutane-
ously injected to mice right flank in the sh-GTSE1 group, 
whereas mice in sh-NC group received the same dose of 
C666-1cells transfected with the scrambled shRNA (sh-
NC). For a span of four weeks, the tumor volume was 
measured every seven days using the following formula: 
volume = 1/2×length×width2. Mice were sacrificed after 
four weeks by inhaling excess isoflurane (R510-22, RWD, 
Shenzhen, China). Samples of the tumors were removed 
and weighed. The Animal Research Ethics Committee of 
Ningbo Medical Center Lihuili Hospital approved all ani-
mal experiments (approval number: 2022 − 440) and they 
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were conducted in accordance with the Guide for the 
Care and Use of Laboratory Animals [64].

Immunohistochemistry
Tumor tissues were fixed in 4% paraformaldehyde, and 
dehydrated with gradient ethanol. Then, tissues were 
embedded into paraffin (YA0011, Solarbio) and cut into 
sections with a thickness of 5  μm. The restoration was 
executed with sodium citrate buffer (pH 6.0, P0081, Bey-
otime) at 94  °C for 15 min. Subsequently, sections were 
sealed with 1% bovine serum albumin (BSA, ST2249, 
Beyotime) for one hour, and hatched with primary anti-
bodies targeting Ki-67 (1:200, ab15580, Abcam), FOXM1 
(1:250, ab207298, Abcam) and STMN1 (1:2000, ab52630, 
Abcam) overnight at 4 °C. The secondary antibody HRP 
labeled anti-rabbit IgG antibody (ab288151, Abcam) was 
used to incubate with sections at 37  °C for 30 min. The 
sections were re-stained with hematoxylin (G1080, Solar-
bio), and pictured under a light microscope (Olympus).

Western blotting
Based on the previous studies [65], using RIPA lysis buf-
fer (R0010, Solarbio), total proteins were isolated from 
NPC tissues and cells. BCA kit (PC0020, Solarbio) was 
then used to quantify the extracted proteins. 20  µg of 
protein samples were electrophoresed with sodium 
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) and then transferred onto PVDF membranes 
(IPVH00010, EMD Millipore, Billerica, MA, USA). Fol-
lowing a one-hour room temperature blockade using 
blocking buffer (SW3015, Solarbio), primary antibod-
ies such as anti-GTSE1 (1:1000, PA5-26879, Invitrogen), 
anti-FOXM1 (1:2000, ab180710, Abcam), anti-STMN1 
(1:500, ab52630, Abcam) and anti-β-actin (1:1000, 
ab8227, Abcam) were applied to membranes for an over-
night period at 4˚C. Subsequently, the membranes were 
developed using ECL solution (SW2030, Solarbio) after 
being incubated for an hour at room temperature with 
the Goat Anti-Rabbit IgG H&L (HRP) (1:20000, ab6721, 
Abcam). ImageJ software was used to measure the band 
intensity.

Statistical analysis
The standard deviation (SD) was used to express the 
data as mean. The Student’s t-test or one-way analysis 
of variance (ANOVA) were used to determine whether 
there was statistically significant difference, followed by 
post hoc Bonferroni test using SPSS 26.0 software (IBM, 
Armonk, New York, USA). When p < 0.05, a significant 
difference was specified.
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