Skip to main content


Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Figure 2 | Cell Division

Figure 2

From: Cdt1 degradation to prevent DNA re-replication: conserved and non-conserved pathways

Figure 2

The genesis of CUL4-DDB1CDT2 and SCFSkp2 E3 components. CUL4-DDBCDT2 and SCFSkp2 complex components were examined in representative organisms of diverse phyla (Table 2). A phylogenetic tree of the taxa analyzed, from eubacteria to mammals, is presented. Note that distances between branches are not to scale. Species and major classifications are color-coordinated, and the temporal locations of the presumed origins of E3 component genes are in red. CUL1-like and CUL4-like cullins, as well as their adaptor proteins DDB1 and Skp1, respectively, appear to have arisen early in eukaryotes, as they are absent from archaea and bacteria but are found in the eukaryotes examined. CDT2, the SRS for a CUL4-DDB1 E3 complex, appears to have arisen prior to the genesis of green plants. Skp2, the SRS for a CUL1 E3 complex, appears to have arisen after the genesis of fungi but prior to the genesis of metazoa. The branching order is based on a phylogenetic analysis using rRNA [76]. Note that other phylogenies, based on protein sequences, reverse the order of plants and slime molds [77]. Combining our genomic data with this alternative branching of phyla (not shown) would imply that CDT2 was created prior to plants in the main eukaryotic lineage but then lost within the slime mold lineage.

Back to article page