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Abstract 

Background Triple‑negative breast cancer (TBNC) is an aggressive breast cancer subtype with a poor prognosis. 
Shugoshin‑1 (SGO1) protects chromatids from early separation. Previous studies from our group have demonstrated 
that transient SGO1 downregulation suppresses early stages of metastasis (the epithelial‑to‑mesenchymal transition, 
or EMT, cell invasion, and cell migration) in TNBC cells. Thus, the inhibition of SGO1 activity may represent a potential 
therapeutic intervention against cancers that progress to metastasis. Therefore, we aimed to investigate the effects of 
sustained shRNA‑mediated SGO1 downregulation on tumor growth and metastasis in TBNC. To that end, female NOD‑
SCID Gamma (NSG) mice were injected with 2.5 ×  106 shRNA Control (n = 10) or shRNA SGO1 (n = 10) MDA‑MB‑231 
cells. After eight weeks, the number of mice with metastasis to the lymph nodes was calculated. Primary and meta‑
static tumors, as well as lung and liver tissue, were harvested, measured, sectioned, and stained with hematoxylin and 
eosin (H&E) stain.

Results Tumor growth and metastasis to the lymph nodes and lungs were significantly reduced in the shRNA SGO1‑
treated mice group, while metastasis to the liver tends to be lower in cells with downregulated SGO1, but it did not 
reach statistical significance. Furthermore, sustained SGO1 downregulation significantly reduced cell proliferation, cell 
migration, and invasion which correlated with lower levels of Snail, Slug, MMP2, MMP3, and MMP9.

Conclusion The supression of SGO1 activity in TNBC harboring dysregulated expression of SGO1 may be a potential 
target for preventing breast cancer growth and metastasis.
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Background
Breast cancer is the most common cancer diagnosed and 
the number one cause of cancer-related deaths in women 
worldwide [1]]. Breast cancer can be classified into 
molecular or pathological subtypes, based on the recep-
tor status of estrogen (ER), progesterone (PR), or Human 
Epidermal Growth Factor 2 (HER2) [2, 3]. The princi-
pal subtypes include HER2 + (ER−/PR− and amplified 
for Her2), luminal A (ER + /PR + and HER2−), luminal 
B (ER + /PR + /HER2 + or HER2−), and triple-negative 
breast cancer (TNBC, ER−/PR−/HER2−).

Our laboratory focuses on the study of TNBC. This 
subtype represents 15% to 20% of all primary breast can-
cers and occurs most frequently in African American and 
Hispanic women at a younger age (< 50 years of age) [4]. 
Higher frequencies of this subtype, along with the detec-
tion of larger breast cancers of higher stages, contribute 
to poorer survival outcomes in African American and 
Hispanic women with breast cancers relative to non-
Hispanic white women [5]. TNBC is the most aggressive 
subtype with a higher likelihood to metastasize [6, 7] and 
women with TNBC have the poorest prognosis when 
compared to other subtypes with an estimated overall 
survival of 12–18  months [8]. TNBC remains a clinical 
challenge despite some improvement in targeted therapy 
developments that includes immunotherapy, PARP and 
AKT pathway inhibitors, antibody–drug conjugates, and 
androgen receptor blockade [4].

A potential therapeutic target for TNBC is Shu-
goshin-1 (SGO1) or mitotic kinases that interact with 
SGO1, including Nek2A [9], Bub1 [10], TTK (also known 
as Mps1) [11, 12], and Aurora Kinase B [13, 14]. Many 
of these kinases are currently in clinical trials, and early 
results for TTK inhibitors are promising [15, 16]. The 
physiological role of SGO1 is to ensure chromosomal 
stability by protecting the centromeric cohesion of sister 
chromatids, assisting bi-orientation attachment at the 
kinetochores, and safeguarding the centriole cohesion 
engagement during mitosis and meiosis [17]. Optimal 
levels of SGO1 are needed for proper cell function. On 
the other hand, the role of SGO1 in cancer is complex 
and context-dependent. For example, SGO1 expression 
is decreased in colorectal cancer and SGO1 downregu-
lation causes G2/M arrest, apoptosis, and chromosome 
instability leading to tumorigenesis [18, 19]. Meanwhile, 
overexpression of SGO1 is a poor prognostic factor in 
prostate cancer [20], and hepatocellular carcinoma [21], 
and its overexpression induces proliferation and metas-
tasis through the AKT signaling pathway [22]. Previous 
studies from our laboratory showed that SGO1 is over-
expressed in breast cancers (including TNBC) and that 
it correlates with overexpression of the E2F3 transcrip-
tion factor, and with poor prognostic factors, including 

centrosome amplification, chromosome instability, and 
the epithelial-to-mesenchymal transition (EMT) [23–25]. 
Further, we demonstrated that transient, siRNA-medi-
ated silencing of SGO1 modulates the protein levels and 
localization of EMT-related proteins, as well as decreases 
matrix metalloprotease (MMP) 3 mRNA levels. These 
EMT-associated changes led to reduced cell invasion and 
migration in TNBC cells MDA-MB-231 and Hs578t, and 
are dependent on MMP3 and SNAIL [26].

Here, we investigate the effects of SGO1 downregu-
lation in tumorigenesis and metastasis in NOD-SCID 
gamma (NSG) mice. We explore the effects of downregu-
lation by assessing cell proliferation, viability, apoptosis, 
and EMT in  vitro. We hypothesize that SGO1 down-
regulation would decrease tumorigenesis and metastasis 
by modulating EMT-related proteins and reducing cell 
viability.

To test our hypothesis, MDA-MB-231 cells expressing 
either shRNA Control or shRNA SGO1 were injected in 
NSG mice. Our results showed that SGO1 downregula-
tion significantly reduced tumor growth and metastasis 
of TNBC to the lungs and lymph nodes. In  vitro stud-
ies using the same cell lines showed that EMT protein 
expression and cell invasion were associated with the 
reduction in the levels of EMT transcription factors and 
MMPs. These results suggest that SGO1 is a potential 
therapeutic target for TNBC.

Materials and methods
Cell culture
The MDA-MB-231 (HTB-26) cell line was purchased 
from American Type Culture Collection (ATCC, Manas-
sas, Virginia, USA) and transduced with shRNA SGO1 
(sc-106548-V, Santa Cruz Biotechnology, Dallas, Texas, 
USA) or negative scrambled shRNA Control (sc-108080, 
Santa Cruz Biotechnology) lentiviral particles. The cells 
were cultured as described in our previous publications 
[23, 25, 27].

Western blotting
To investigate the effects of SGO1 downregulation on 
EMT protein expression, MDA-MB-231 cells express-
ing shRNA control or an shRNA targeting SGO1 were 
lysed and Western blot protocol was performed accord-
ing to our published protocols [23]. The following were 
used as primary antibodies: SGO1 (sc-393993, Santa 
Cruz Biotechnology), E-cadherin (3195s, Cell Signaling 
Technology, Danvers, Massachusetts, USA), Slug (9585s, 
Cell Signaling Technology), Snail (3879s, Cell Signaling 
Technology), Twist1 (46702s, Cell Signaling Technol-
ogy), Vimentin (5741s, Cell Signaling Technology), Zeb1 
(3396, Cell Signaling Technology), and ZO-1 (8193s, Cell 
Signaling Technology). β-actin (sc-47778, Santa Cruz 
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Biotechnology) was used as a loading control. Either goat 
anti-rabbit HRP (sc-2004, Santa Cruz Biotechnology) or 
goat anti-mouse HRP (NXA931, GE Healthcare, Chicago, 
Illinois, USA) were used as secondary antibodies. The 
average of three independent experiments was reported. 
For original films refer to supplementary material (Addi-
tional file 1: Figures S2–S7).

RNA isolation, RNA quantification, and quantitative 
real‑time PCR
To investigate the effects of SGO1 downregulation 
on EMT mRNA expression, total RNA was extracted 
using the RNeasy Mini kit (1002137, Qiagen, Ger-
mantown, Maryland, USA) following the manufac-
turer’s instructions. RNA was quantified and reverse 
transcribed, and quantitative real-time PCR (qPCR) 
analysis was performed according to our published pro-
tocols [26]. The mRNA levels of SGO1 (PPH10976A-200, 
Qiagen), SNAI1 (Snail, PPH02459B-200, Qiagen), 
SNAI2 (PPH02475A-200, Qiagen), TWIST1 (Twist1, 
PPH02132A-200, Qiagen), ZEB1 (Zeb1, PPH01922A-200, 
Qiagen), MMP2 (PPH00151B-200, Qiagen), MMP3 
(PPH00235F-200, Qiagen), MMP9 (PPH00152E-200, 
Qiagen), CDH1 (E-cadherin, PPH00135F-200, Qiagen), 
CDH2 (N-cadherin, PPH00636F-200, Qiagen), VIM 
(Vimentin, PPH00417F-200, Qiagen), and TJP1 (ZO-
1, PPH09919F-200, Qiagen) were evaluated. GAPDH 
(PPH72843A-200, Qiagen) mRNA levels were used as a 
control. The  2−ΔΔCT method was used to calculate fold 
changes relative to the control and the average of three 
independent experiments was reported.

In vitro invasion and migration assays
BioCoat Matrigel Invasion Chambers (354480, Corn-
ing, Glendale, Arizona, USA) and BioCoat Control Cell 
Culture Inserts (354578, Corning) were used to evalu-
ate the invasion and migration of MDA-MB-231 cells 
treated with shRNA Control or shRNA SGO1 using our 
published methods [28]. Images were taken using the 
Nikon DS-Ri2 microscope and the average from three 
independent experiments (four fields/treatments) was 
reported.

Viability assay
To investigate the effects of SGO1 downregulation on cell 
proliferation and viability, a Cell Counting Kit-8 (CCK8) 
analysis (CK04-11, Dojindo Molecular Technologies, Inc., 

Rockville, Maryland, USA) was performed as described 
previously [26]. The average adjusted absorbance from 
three independent experiments was reported.

Apoptosis assay
To investigate the effects of SGO1 downregulation in 
apoptosis, MDA-MB-231 treated with shRNA Control 
or shRNA SGO1 were seeded at a density of 1 ×  106 and 
further trypsinized and washed with PBS 1 × before pro-
ceeding with the Annexin V Apoptosis Detection Kit 
I (559763, BD Biosciences, San José, California, USA) 
protocol. Both cell lines, expressing shRNA Control, or 
shRNA SGO1 were prepared as follows for flow cytom-
etry: Unstained, PE Annexin V (no 7-AAD), and 7-AAD 
(no PE Annexin V). Flow cytometry analysis was per-
formed using the FACSMelody instrument within 1  h 
of staining. The average from three independent experi-
ments was reported for the analysis.

Animal model
NSG females (4 weeks old) were obtained from Jackson 
Laboratories, Inc. (005557). Mice were allowed to adapt 
under a sterile and pathogen-free environment for two 
weeks. The mice had free access to distilled water and 
food were on a 12  h light–dark cycle, and were housed 
in groups of five per cage. The mice were observed daily 
by staff, including a veterinarian. For any surgical proce-
dure we used inhaled anesthesia to minimize pain and 
discomfort. After surgery, the animals were allowed to 
recover. The parameters to determine a premature end-
point included failure to feed, mood, or groom, or when 
the tumor reached 10% of body weight.

Breast cancer xenograft model
To investigate the effects of SGO1 downregulation in 
tumor growth, a total of 2.5 ×  106 MDA-MB-231 (shRNA 
Control or shRNA SGO1) cells were injected into both 
posterior mammary fat pads of 16–18 weeks old female 
NSG mice according to our published protocols [26]. To 
minimize the pain and discomfort, all the procedures 
were conducted under anesthesia and delivered by mask 
(2% isoflurane and oxygen). Tumors were measured twice 
a week for a maximum period of eight weeks (or until 
mice exhibited severe discomfort). Tumor volume was 
calculated using the following formula V =

L×W
2

2
 , where 

L represents the larger diameter and W represents the 
smaller diameter. Mice were euthanized by inhalation of 
 CO2 after 8 weeks post-injection or when the mice exhib-
ited severe discomfort and pain evidenced by failure to 
move, groom, or feed.
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H&E staining
To investigate the effects of SGO1 downregulation in 
metastasis, the liver, lungs, primary tumors, and second-
ary tumors were fixed in 10% formalin buffer and embed-
ded in paraffin, as previously described [29]. The tissues 
were sectioned (2 μm) and stained with hematoxylin and 

eosin (H&E, Thermo Fisher, Waltham, MA). Images were 
taken using the Nikon DS-Ri2 microscope and a certified 
pathologist, Dr. A. Isidro, examined the stained tissues 
to confirm the presence of micrometastasis in lung and 
liver tissue, and to evaluate the mitotic index in primary 
tumors.
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Fig. 1 SGO1 downregulation reduces tumor growth. The average of left and right tumors per day for the shRNA Control group (n = 10) and 
the shRNA SGO1 group (n = 10) were recorded for 45 days post‑injection (a). The error bars represent the mean ± SEM. *p < 0.05, **p < 0.01, and 
***p < 0.001 were considered statistically significant. A two‑way ANOVA was conducted to compare differences between groups with more 
than one categorical variable. Some representative images of the primary tumors per each group are shown (b). A Western blot was performed 
to characterize the SGO1 expression in representative primary tumors (c). The densitometry analysis is shown (d). The error bars represent the 
mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 were considered statistically significant. N.S. stands for not significant. A Student t‑test (unpaired, 
two‑tailed) was used to compare differences between groups
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Fig. 2 SGO1 downregulation reduces metastasis. Representative images for H&E staining of lung tissue are shown in low (top) and high (bottom) 
magnification (a). The black arrows point to metastasis (scale bars = 100 μm). The graph shows the number of mice that developed metastasis to 
the lungs (b). Representative images for H&E staining of liver tissue are shown in low (top) and high (bottom) magnification (c). The black arrows 
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volume of secondary tumors (e). *p < 0.05, **p < 0.01, and ***p < 0.001 were considered statistically significant, while N.S. is non‑significant. A Fisher 
Exact Test was used to compare differences between groups
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Statistical analysis
For all data analysis, we used the software GraphPad 
Prism version 8.4.3 (686). The values are represented as 
mean + /− SEM for n = 3 for all in vitro experiments and 
n = 10 per group for in vivo experiments. The data were 
considered significant if the p-value was < 0.05. A Student 
t-test (unpaired, two-tailed) was used to compare dif-
ferences between groups. A two-way ANOVA was used 
to compare differences in groups with more than one 
categorical variable. For the metastasis studies, a Fisher 
exact test was performed. To determine the appropriate 
sample size for measuring tumor growth, we performed 
the following power analysis: a sample size of 8 mice per 
group will have 95% power to detect a mean difference 
of at least 0.3 (with SD = 0.1) using the Hsu (With Best) 
multiple comparison test at a two-sided 5% type I error 
using one-way ANOVA.

Results
SGO1 downregulation reduces tumor growth 
and metastasis in NSG mice
Previous studies from our laboratory have shown a role 
for SGO1 in early metastasis (the epithelial-to-mesenchy-
mal transition, or EMT, cell migration, and invasion) of 
TNBC cell lines [25]. However, it is unknown if the stable 
downregulation of SGO1 would suppress tumor growth 
and metastasis of TNBC. The results from Fig. 1a show 
that SGO1 downregulation abrogates tumor growth of 
MDA-MB-231 cells when compared to shRNA control-
treated cells. A representative picture of the tumors is 
shown in Fig. 1b, while images from other tumors can be 
found in supplementary materials (Additional file 1: Fig-
ure S1a, b). Moreover, the stable knockdown of SGO1 is 
maintained even after 45 days post-injection (Fig. 1c, d).

Metastasis to the lungs, livers, and lymph nodes was 
then detected. Metastasis to the lungs is more likely 
to occur in the shRNA control group, compared to 
the shRNA SGO1 group (metastasis rate 0.8 vs. 0.2, 
p = 0.023), Figs.  2a, b. Metastasis to the liver tends to 
be more likely to occur in the shRNA control group, 
compared to the shRNA SGO1 group although it does 
not reach statistical significance (metastasis rate: 0.5 vs. 
0.1, p = 0.14), Figs. 2c, d. Metastasis to lymph nodes is 
more likely to occur in the shRNA control group, com-
pared to the shRNA SGO1 group (metastasis rate: 0.7 
vs. 0.1, p = 0.02), Fig.  2e. To summarize, these results 
suggest an important role for SGO1 in tumor growth 
and metastasis in TNBC.

Furthermore, we investigated the effects of shRNA 
SGO1 in primary tumors and found significant differ-
ences in cells on metaphase and anaphase but not on 
prometaphase or telophase (Fig.  3). These results sug-
gest that depletion of SGO1 increases mitotic arrest, 
or slows down the transition from metaphase to ana-
phase, and from anaphase to telophase. These results 
are expected given the described functions of SGO1 in 
the regulation of chromatid cohesion.

The downregulation of SGO1 suppresses EMT, cell 
invasion, and migration
To investigate the mechanisms by which the downregu-
lation of SGO1 suppresses metastasis, we investigated 
the effects of SGO1 downregulation on cell invasion 
and cell migration. Results from Fig. 4a–c demonstrate 
that SGO1 downregulation significantly reduces cell 
invasion and migration.

We hypothesized that these changes were medi-
ated through EMT protein modulation, and through 
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b shRNA 
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shRNA SGO1 p-Value

Prometaphase 2.40 2.33 0.5266 (N.S.)

Metaphase 6.75 11.00 0.0386*

Anaphase 17.80 35.67 0.0021**

Telophase 2.05 2.00 0.9094 (N.S.)

shRNA Control          

Fig. 3 SGO1 depletion increases the number of cells arrested in 
metaphase and anaphase within tumors. Representative images 
of primary tumors of NSG mice treated with MDA‑MB‑231 shRNA 
Control or shRNA SGO1 (a). Images were taken at 400X magnification 
(scale bars = 100 μm). A summary table shows the average of cells 
in each mitotic phase and p‑Values (b). *p < 0.05, **p < 0.01, and 
***p < 0.001 were considered statistically significant. A Student t‑test 
(unpaired, two‑tailed) was used to compare differences between 
groups. *p < 0.05, **p < 0.01, and ***p < 0.001 were considered 
statistically significant. N.S. stands for not significant
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transcription factors that promote EMT. Therefore, 
we evaluated how SGO1 downregulation (Figs.  5a, b) 
affected the expression of certain EMT-related proteins 
including the epithelial markers E-cadherin and ZO1, 
and the mesenchymal marker Vimentin. We observed 

an increase in epithelial markers E-cadherin and ZO1, 
but it was not statistically significant. Meanwhile, no 
changes were observed for Vimentin (Figs.  5c, d). On 
the other hand, we did observe that SGO1 downregu-
lation significantly decreases Snail and Slug protein 
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Fig. 4 SGO1 promotes cell invasion and migration in triple‑negative breast cancer cells. Representative images of invading (top) or migrating 
(bottom) shRNA Control or shRNA SGO1 MDA‑MB‑231 cells (a). Images were taken at 200X magnification (scale bars = 100 μm). Graphs represent 
the average of triplicates of cells that invaded (b) and migrated (c). The error bars represent the mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 
were considered statistically significant. N.S. stands for not significant. A Student t‑test (unpaired, two‑tailed) was used to compare differences 
between groups
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expression, while the changes in other transcription 
factors that promote EMT (Zeb1 and Twist) were 
unchanged (Figs. 5e, f ).

Moreover, SGO1 downregulation (Fig. 6a) leads to a 
significant reduction in mRNA levels of the EMT tran-
scription factors Snail and Slug (Fig. 6b). Furthermore, 
SGO1 downregulation significantly reduces the mRNA 
levels of MMP2, MMP3, and MMP9 (Fig.  6c). These 

MMPs are also important mediators of cell invasion 
and migration through the degradation of the extracel-
lular matrix (ECM). Because our laboratory has previ-
ously shown that the downregulation of Snail, Slug, and 
MMP3 significantly suppress cell invasion and migra-
tion in TNBC cells [25, 27], these results suggest that 
SGO1 downregulation reduces cell invasion and migra-
tion through the downregulation of EMT transcription 
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factors belonging to the Snail family (Snail and Slug) 
and MMPs (MMP2, MMP3, and MMP9).

The downregulation of SGO1 decreases cell proliferation 
and viability in TNBC
Lastly, we explored the effects of SGO1 downregulation 
on cell proliferation, cell viability, and apoptosis. Given 
its role in cell division and the marked effect on tumor 
growth, we hypothesized that the downregulation of 
SGO1 will affect cell viability. Figure  7a shows that the 
downregulation of SGO1 significantly reduces cell pro-
liferation and viability. However, differences between 
control and shRNA SGO1 in cells undergoing early and 
late apoptosis as well as in necrosis were not significant 
(Fig.  7b–d). Taken together, these results suggest that 
SGO1 downregulation has a role in cell proliferation and 
viability but not in apoptosis. Nevertheless, the results 
suggest that targeting SGO1 may be helpful for early dis-
ease treatment by limiting cell proliferation and viability.

Discussion
Metastasis in TNBC remains a clinical challenge due to 
the lack of effective therapies. Previous studies from our 
laboratory showed roles for SGO1 in centrosome ampli-
fication, cell invasion, cell migration, and EMT [24, 26]. 
However, this is the first study that shows a role for SGO1 
in tumor growth and  metastasis in TNBC.

Our group pioneered the study of SGO1 in breast can-
cer in general by demonstrating, using cBIOPORTAL, 
that the overexpression of SGO1 in breast tumors corre-
lates with the overexpression of the E2F transcriptional 

activators E2F1, E2F2, and E2F3 [23]. The E2F activa-
tor overexpression is higher in the basal/TNBC subtype, 
which may contribute to the highly proliferative nature of 
these tumors. The study from Lee et al. [23] also demon-
strated that E2F1 and E2F3 overexpression in MCF10A 
(non-transformed human mammary epithelial cells) cor-
related with increased expression of SGO1. Because the 
role of SGO1 in TNBC was unknown, Jusino et al. [26], 
demonstrated, using cBIOPORTAL,  that SGO1 is more 
frequently overexpressed in patients with basal/TNBC 
relative to other subtypes (30% of basal/TNBC patients 
vs. 0.5% in Luminal A and 6.3% of Luminal B patients); 
this follows very closely the pattern of expression of E2F3 
in TNBC (42% in basal/TNBC, 0.5% in Luminal A and 
2.42% Luminal B). Therefore, we compared E2F3 and 
one of its targets, SGO1, in their ability to suppress early 
metastasis (EMT, cell invasion, and cell migration) and 
demonstrated that their transient downregulation sup-
pressed early metastasis.

In the present manuscript, we demonstrate that the 
sustained downregulation of SGO1 can suppress metas-
tasis. We were encouraged by the results published by 
our laboratory that the sustained downregulation of 
E2F3 slowed down the growth of TNBC tumors signifi-
cantly, but slightly over controls [25]. What may allow 
the growth of cells with downregulated E2F3 is the 
presence of the other E2F activators, E2F2 and E2F1; in 
other words, the functional redundancy among the E2F 
activators. In contrast, SGO1 is a mitotic protein with a 
unique function -holding sister chromatids together [30]. 
Therefore, the stable silencing of SGO1 greatly reduces 
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tumor growth, while suppressing metastasis. Future 
experiments can be done by allowing tumors to grow and 
inducibly knocking down or knocking out SGO1.

Our results suggest that the suppression of tumor 
growth and metastasis in TNBC following SGO1 down-
regulation are in part mediated by Snail and Slug. In 
other publications, we demonstrated the direct roles of 
these transcription factors in mediating early metastasis 
in TNBC [25, 27]. The Snail family (Snail and Slug) func-
tions as master regulators of EMT by repressing several 
epithelial genes including E-cadherin while activating 
mesenchymal genes such as N-cadherin. The Snail fam-
ily also activates MMPs and other transcription factor 
families (e.g., Twist and Zeb) (reviewed in [31]). Further, 
we demonstrated the key role of SGO1 in the regulation 
of MMP2, MMP3, and MMP9, which are important to 
modulate cell invasion and migration. In a previous pub-
lication, our lab demonstrated that MMP3 is critical to 
driving cell migration and invasion downstream of SGO1 
in TNBC [25]. Moreover, we demonstrated the important 
role of SGO1 in cell proliferation and viability. However, 
despite observing some increase in apoptosis and necro-
sis, these changes were not significant. This suggests that 
SGO1 affects cell viability through proliferation. Another 
explanation is that SGO1 may reduce tumor growth 
(and thus metastasis) due to its role in cell division. This 
is suggested by experiments presented in Fig.  3b that 
in  vivo tumors that are downregulated for SGO1 have 

an increased number of cells in metaphase and anaphase 
relative to shRNA controls; this suggests either cell cycle 
arrest or a change in mitotic timing. Future studies can 
be performed to further elucidate this cross-talking 
mechanism that links the cell cycle and metastasis.

Our study shows a promising link between SGO1, 
EMT, and metastasis in TNBC. Thus, suggesting that 
SGO1 may serve as a therapeutic target for metastatic 
TNBC. Alternatively, proteins that interact with SGO1 
(e.g., Aurora B, Bub1, Nek2, or TTK) [32] can be tar-
geted with small molecule inhibitors. Targeting any 
of these kinases may be more feasible than targeting 
SGO1, which is not a kinase, and already some of these 
kinases are in clinical trials (reviewed in [33]). Moreo-
ver, we have shown the role of Nek2 [27] and TTK [28] 
in EMT. Therefore, the biological inactivation of SGO1, 
or of kinases that can interact with SGO1 or that phos-
phorylate SGO1, can be used as a future therapeutic 
strategy against TNBC.

Conclusion
Our findings indicate that SGO1 plays a novel role in 
TNBC by regulating the transcription factors Snail and 
Slug. These transcription factors in turn modulate EMT 
genes (including MMP2, MMP3, and MMP9), cell inva-
sion, migration, and lung metastasis (Fig. 8). Therefore, 
SGO1 and upstream regulators of SGO1 represent an 
opportunity to develop targeted therapies for TNBC.
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Fig. 8 Research model. Diagram summarizing our findings that SGO1 modulates Snail and Slug expression, which in turn leads to EMT through 
the repression of epithelial markers and activates mesenchymal markers, including MMPs. In turn, these molecular changes act as precursors to cell 
invasion, cell migration, and metastasis in TNBC
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