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Abstract 

Mammalian sterile 20-like (Ste20-like) protein kinase 3 (MST3) or serine/threonine-protein kinase 24 (STK24) is a 
serine/threonine protein kinase that belongs to the mammalian STE20-like protein kinase family. MST3 is a pleiotropic 
protein that plays a critical role in regulating a variety of events, including apoptosis, immune response, metabolism, 
hypertension, tumor progression, and development of the central nervous system. The MST3-mediated regulation 
is intricately related to protein activity, post-translational modification, and subcellular location. Here, we review the 
recent progress on the regulatory mechanisms against MST3 and its-mediated control of disease progression.
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Introduction
Sterile 20 (STE20) is a serine/threonine protein kinase 
family that was originally discovered in the budding 
yeast. Presently, 28 mammalian STE20-like (MST) 
kinases, homologs to yeast STE20, have been identi-
fied [1]. According to the relative location of the kinase 
domains, these are divided into two families, namely, 
the p21-activated kinase (PAK) family (COOH terminal 
kinase domain) and germinal center kinase (GCK) fam-
ily  (NH2 terminal kinase domain). In mammals, the five 
characterized MST family kinases can be divided into 
two subgroups, namely, GCK-II (MST1 and MST2) and 
GCK-III (MST3, MST4, and YSK1) [2]. It is reported that 
the MST family numbers are closely related to the regula-
tion of a variety of biological activities, such as cytoskel-
etal organization, cell motility, apoptosis, and central 

nervous system (CNS) development (Table  1). At pre-
sent, increasing attention has been paid to MST3 regard-
ing its roles in modulating apoptosis, immune response, 
metabolism, hypertension, tumor progression, and CNS 
development [2–5]. The MST3-mediated regulation of 
disease progression is closely associated with protein 
activity, which is affected by protein cleavage, subcellu-
lar distribution, and post-transcriptional modification 
[6–8]. Therefore, in this review, we summarize the recent 
progress on the regulatory mode against MST3 and the 
mechanisms underlying the MST3-mediated control of 
disease development.

Homology of MST kinases
The MST kinases contain an N-terminal kinase domain 
and a C-terminal regulatory domain. In human MST3, 
the N-terminal kinase domain is located at 36–286 
amino acids, whereas the C-terminal regulatory 
domain is located at 287–443 amino acids [22] (Fig. 1). 
Sequence alignment revealed that human MST3 shares 
a nearly 70% sequence identity with MST4 and YSK1 
while sharing a nearly 40% identity with MST1 and 
MST2 (Fig. 2). The MST proteins contain high sequence 
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identity at the N-terminal kinase domain but not at the 
C-terminal domain. Human MST3 has five variants, 
whereas mouse MST3 has four isoforms. The high rate 

of the identity of canonical sequences of MST3 among 
humans, mice and rats is up to 93% (Fig. 3).

Subcellular distribution
Under normal conditions, MST3 is localized predomi-
nantly in the cytoplasm. During apoptosis, the activated 
caspase-3 cleaves MST3 at the junction of the N- and 
C-terminal domain  (AETD313G), following which the 
truncated MST3 (MST3/N) is translocated into the 
nucleus [22]. The nuclear localization sequence (NLS) at 
the C-terminus of its kinase domain (residues 278–292) 
is required for the intranuclear translocation of MST3 
[23], whereas a nuclear export signal (NES) is postulated 
to be in the C-terminal regulatory domain (amino acids 
335–386) (Fig. 1) [23]. It is reported that the myristoyla-
tion of MST3 induces the diffusion in the cytosol or 
translocation into the nucleus via its nuclear localization 
sequence [24]. These results suggest that the subcellular 
location of MST3 can be modulated by the diverse cleav-
age or post-translational modification.

Kinase activity sites, modifications, 
and interactions
The MSTs are serine/threonine protein kinases that pro-
mote phosphorylation or activation of substrate proteins 
by transferring phosphate groups from GTP or ATP to 
the serine or threonine residue of target proteins. The 

Table 1 Similar or different biological functions among MST 
kinases

MST kinases Biological functions References

Similarities 
(MST1-4 and 
YSK1)

Cytoskeleton organization [2]

Cell polarity and migration [9]

Apoptosis [10, 11]

Proliferation and migration of cancer cells
Immune regulation

[12, 13]
[14]

CNS development [5]

Differences

MST1/MST4 Autophagy [12, 15, 16]

MST1/2 Glycogen storage [17]

MST1/2 Stem cell function [18]

MST1/YSK1 Pancreatic cell homeostasis, and insulin 
secretion

[2]

MST1/3/4/5 Lipid metabolism [2, 9]

MST3 Hypertension [19, 20]

MST4 Radioresistance [12]

YSK1 Golgi integrity [21]

Fig. 1 Protein domain and kinase sites of MSTs



Page 3 of 11Qiu et al. Cell Division            (2023) 18:8  

mutants of MST1 K59R, MST2 K56R, MST3/MST4 
K53R and YSK1 K49R and D158A display deficient 
kinase activity [22, 25, 26]. In contrast, the phosphoryla-
tion of MST2 Ther117 or Ther384 by Akt renders the 
kinase inactive [27] (Fig.  1). The activation of MST3 is 
associated with post-translational modifications, includ-
ing autophosphorylation, phosphorylation, and myris-
toylation. Thr178 is the conserved autophosphorylation 
site of STE20-like kinases [28]. The mutation of threo-
nine to alanine at codon 178 of MST3 or MST4 leads 
to the deficiency of kinase activity [12, 28]. Although 
MST3 also autophosphorylates at codon Thr328, the 

phosphorylation at this residue does not affect the kinase 
activity of MST3 [29]. In addition, the phosphorylation of 
MST3 at Lys53 [19, 30] or Ser79 [31] is essential for the 
kinase activity of MST3 (Fig. 1).

Recently, several upstream kinases and regulators 
have been reported to regulate the activation of MST3. 
The cyclin-dependent kinase 5 (Cdk5) that phosphoryl-
ates MST3 at Ser79 is essential for the activity of MST3 
[31]. A novel isoform of MST3 (MST3b) with a differ-
ent 5’ coding region from MST3 (strictly expressed in 
the brain), is effectively phosphorylated by cyclic AMP-
dependent protein kinase (PKA) at Thr18 (this residue is 

Fig. 2 Sequence alignment of human MST family protein. Multiple alignments were carried out using UniProt-Align (https:// www. unipr ot. org/ 
align). The alignment was drawn using ESPript 3.0 (http:// espri pt. ibcp. fr/ ESPri pt/ cgi- bin/ ESPri pt. cgi). MST1 (accession no. UniProtKB-Q13043); MST2 
(accession no. Q13188); MST3 (accession no. Q9Y6E0); MST4 (accession no. Q9P289); YSK1 (accession no. O00506)

https://www.uniprot.org/align
https://www.uniprot.org/align
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
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Fig. 3 Sequence alignment of MST3 isoforms from human and mouse species. Multiple alignments were carried out using UniProt-Align 
(https:// www. unipr ot. org/ align). The alignment was drawn using ESPript 3.0 (http:// espri pt. ibcp. fr/ ESPri pt/ cgi- bin/ ESPri pt. cgi). Human MST3 
variant 1(a) (canonical sequence; accession no. NP_003567.2); MST3 variant 2(b) (accession no. NP_001027467.2); MST3 variant 3 (accession no. 
NP_001273578.1); MST3 variant X1 (accession no. XP_016876283.1); MST3 variant X2 (accession no. XP_024305194.1); mouse MST3 (canonical 
sequence; accession no. NM_145465.2); mouse MST3 variant X1 (accession no. XM_017315988.2); mouse MST3 variant X2 (accession no. 
XM_011245043.4); mouse MST3 variant X3 (accession no. XM_006518918.3); rat MST3 (accession no.NP_001120966.1); rat MST3 variant X1 
(accession no. XP_038949467.1)

https://www.uniprot.org/align
http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi
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absent in MST3) [32]. Although MST3 can also be phos-
phorylated at tyrosine following treatment with a tyros-
ine phosphatase inhibitor (PV), the tyrosine modification 
does not alter the activity of MST3 [33]. In addition, 
MST3 can be myristoylated, which could avoid the bind-
ing of its negative regulatory domain with the catalytic 
domain, resulting in a constitutively active enzyme [24].

Apart from post-translational modification, the activity 
of MST3 is also modulated by a series of cellular activi-
ties, such as caspase-mediated cleavage and interaction 
with regulators (Table  2). Caspase 3-mediated cleav-
age of MST3 at the junction of the N-terminal kinase 
domain and C-terminal regulatory domain activates its 
intrinsic kinase activity by removing the negative regula-
tory domain [22]. The binding of MST3 with its master 
regulator MO25 scaffolding protein stimulates its kinase 
activity three- to four-fold [34]. In contrast, striatin-
interacting phosphatase and kinase (STRIPAK) complex 
components, protein phosphatase 2A (PP2A) [35] or 
FAM40A [36], inactivates MST3 by dephosphorylating 
its activation loop.

Roles and regulatory mechanisms of MST3 
in disease progression
MST3 and apoptosis
Apoptosis is a form of programmed cell death that is 
critical for maintaining cellular physiologic homeostasis. 
Apoptosis is triggered by a series of effectors (e.g., cas-
pases 3 and 8) and regulators through two major path-
ways, namely, extrinsic (death receptor-mediated) and 
intrinsic (mitochondria-mediated) pathways. Research-
ers have demonstrated that MST3 is closely related to the 
regulation of apoptosis (Fig. 4 and Table 3). In response 
to staurosporine, MST3 triggers apoptosis by activating 
caspase 3 (cleavage of caspase 3), a key player in acti-
vating both extrinsic and intrinsic apoptotic pathways 
by cleaving several downstream cell survival-associated 
proteins [3]. Moreover, Wu et al. reported that MST3 is 
overexpressed in placental trophoblasts during labor-
induced oxidative stress. The overexpression of MST3 in 
the human trophoblast cell line 3A-sub-E promotes cas-
pase 3-mediated apoptosis [30]. In line with this result, 

researchers reported that MST3 triggers cell death in the 
hydrogen peroxide  (H2O2)-treated human colon carci-
noma HCT116 cell line by suppressing the JNK survival 
pathway and up-regulating cytoprotective HO-1 (heme 
oxygenase-1) [6]. Further analysis demonstrated that 
the MST3 kinase activity is essential for  H2O2-induced 
apoptosis of cells because the kinase-dead mutant of 
MST3 (Lys53 to Arg53) displayed an impaired ability to 
induce apoptosis than the wild-type MST3 [30]. In addi-
tion to the caspase-mediated canonical apoptosis, MST3 
activates the caspase-independent apoptotic pathway in 
human cervix HeLa cells by promoting the nuclear trans-
location of apoptosis-inducing factor and endonuclease 
G by disrupting the mitochondrial membrane potential 
(Δψm) [3].

Although MST3 has been proved to trigger apopto-
sis through the caspase effector, it can also be cleaved 
by caspase 3 at the domain  (AETD313G) during anti-Fas 
antibody- or staurosporine-induced apoptosis in Jur-
kat cells [22]. The cleavage of MST3 by caspase 3 causes 
nuclear accumulation of the active kinase domain of 
MST3 and increased apoptosis induced by the truncated 
MST3 [22]. These results suggest that MST3 and cas-
pase 3 form a feedback loop during the initial stages of 
apoptosis by modulating the protein cleavage-mediated 
enhanced activity. However, this speculation requires 
further investigation.

MST3 and immune regulation
Reports have revealed that the MST kinase family mem-
bers, namely, MST1 and MST2, are the important com-
ponents of the immune-associated Hippo pathway [14]. 
MST1 and MST2 play crucial roles in regulating both 
innate and adaptive immune response-related activities, 
such as T cell homeostasis, lymphocyte trafficking, anti-
viral immune signaling [46, 47], and CD8α+ dendritic 
cell activation [14]. Neutrophils are the first responders 
to inflammation and infection; they migrate to inflam-
matory sites and execute the program of degranulation 
to release antimicrobial molecules or cytotoxic agents 
[48]. Zhang et al. reported that the deficiency of STK24 
enhances the degranulation of neutrophils. The STK24 

Table 2 Regulators involved in modulation of MST3 kinase activity

Upstream kinase/regulator Regulatory mode Biological function References

Cdk5 Phosphorylate MST3 at Ser79 Neuronal migration [31]

PKA Phosphorylate MST3b at Thr18 [32]

Caspase 3 Cleave MST3 at  AETD313G Apoptosis [22]

MO25 Bind with MST3 [34]

PP2A Dephosphorylate and inactivate MST3 Cell migration [35]

FAM40A Dephosphorylate and inactivate MST3 Cell migration [14]
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Fig. 4 Schematic diagram of MST3-mediated regulation
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binds to UNC13D and suppresses UNC13D-lipid bind-
ing and granule docking, thus inhibiting the exocytic pro-
cess of neutrophil degranulation [37], thereby indicating 
a critical function of MST3 in promoting host immune 
response. In addition, the number of immune inhibitory 
myeloid-derived suppressor cells (MDSCs) and tumor-
associated macrophages (TAMs) were increased, whereas 
the number of tumoricidal  CD4+ T cells was decreased 
in the STK24 knockout gastric tumor sections, indicating 
that MST3 promotes antitumoral immune response [38, 
39]. Nevertheless, the underlying mechanisms need fur-
ther investigation.

MST3 and metabolism
Recently, a series of studies have unveiled a previously 
unknown function of GCKIII kinases in metabolic reg-
ulation [2]. As a member of the GCKIII family protein, 
MST3 has lately been demonstrated to increase insulin 

resistance and blood glucose levels in mice fed with an 
obesity-promoting high-fat diet (HFD) [40]. Knockout 
of MST3 in these mice led to impaired hyperglycemia, 
hyperinsulinemia, and insulin resistance. Mechanistic 
analysis revealed that a lack of MST3 in both cultured 
liver cells and the livers of animals after HFD activates 
the insulin signaling pathway downstream of IRS1 by 
inhibiting forkhead box (FOX)O1-mediated downregu-
lation of genes encoding gluconeogenic enzymes [40]. 
In addition to the regulation of insulin signaling, studies 
have reported that MST3, MST4, and STK25 are exclu-
sively localized around intracellular lipid droplets and 
increase fat accumulation in human hepatocytes as well 
as the initiation and progression of nonalcoholic fatty 
liver disease (NAFLD) [9, 41]. Mice treated with anti-
sense oligonucleotides (ASOs) targeting MST3 effectively 
ameliorated HFD-induced nonalcoholic fatty liver dis-
ease (NAFLD)-associated liver steatosis, inflammation, 

Table 3 Biological activities of MST3 and the underlying mechanisms

Biological function Regulatory mechanism References

Apoptosis

 Induce apoptosis Activate caspase 3 in human trophoblast cells [30]

Suppress JNK in human colon carcinoma cells [6]

Upregulate cytoprotective HO-1 in colon carcinoma cells [6]

Disrupt mitochondrial membrane potential in human cervix HeLa 
cells

[3]

Immune regulation

 Inhibit neutrophil-mediated inflammatory response Inhibit neutrophil degranulation [37]

 Promote anti-tumoral immune response Associate with decreased ratio of MDSCs and TAMs in gastric tumor 
tissue

[38, 39]

Associate with increased percentage of  CD4+ T cells in gastric 
tumor tissue

[38, 39]

Metabolism

 Increase insulin resistance and blood glucose levels Deactivate IRS1-FOXO1 pathway [40]

 Promote lipid accumulation Increase the expression of lipogenic genes and ACC [41]

Inhibit β-oxidation and triacylglycerol secretion [42]

Increase fatty acid influx and lipid synthesis [42]

Hypertension

 Maintain  Na+/K+ homeostasis and blood pressure stability Inhibit  Na+ channel and  Na+-K+-Cl− cotransporter activities [20, 43]

Suppress WNK4 expression [43]

Tumor progression

 Promote breast cancer growth Activate VAV2-Rac1-cyclin D1 pathway [4]

 Promote gastric cancer growth Enhance p21 expression [7]

 Inhibit migration of adenocarcinoma Inhibit paxillin phosphorylation via PTP-PEST [28]

 Suppress migration of gastric cancer Increase expression of CDH1 (E-Cadherin) and CD44 [38]

CNS development

 Promote radial neuronal migration and final neuronal position-
ing

Suppress Rho-GTPase activity of RhoA [31]

 Promote the development of filopodia, dendritic spine and 
excitatory synapse

Phosphorylate TAO1/2 kinases [44]

 Promote neuronal regeneration Activate P42/44MAPK and LIMK/Cofilin pathway [45]
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fibrosis, and hepatocellular damage [41]. Mechanisti-
cally, MST3 ASOs inhibit the expression of lipogenic 
genes, as well as acetyl-CoA carboxylase (ACC) protein 
abundance, leading to reduced lipotoxicity-mediated 
oxidative and endoplasmic reticulum stress in the liver 
of obese mice [41]. Similarly, researchers unveiled that 
MST3 modulates the dynamic metabolic balance of liver 
lipid catabolism versus lipid anabolism. Knockdown of 
MST3 decreased the accumulation of lipids in human 
hepatocytes by stimulating β-oxidation and triacylg-
lycerol secretion while suppressing fatty acid influx and 
lipid synthesis [42]. Moreover, recent study reported 
that all 28 STE20 kinases including MST3 phosphorylate 
the energy metabolism-related protein kinases, AMP-
activated protein kinase (AMPK) and the salt-inducible 
kinase 3 (SIK3) [49]. The MST3 or the brain expressed 
MST3b isoform phosphorylates AMPKα1-T183 and 
SIK3-T221 [50].

MST3 and hypertension
A combination of defective renal salt and water excre-
tion and increased salt intake frequently contributes to 
hypertension. Lu et  al. disclosed that MST3 is a stress-
regulated kinase that maintains sodium homeostasis 
after a high-salt diet and protects the development of 
hypertension in mice. The MST3 protein expression 
is markedly reduced in the kidneys of spontaneously 
hypertensive rat (SHR) kidneys, whereas this level was 
elevated when normal mice were administered a high-
salt diet [19]. In  vitro study unveiled that under hyper-
tonic stress (900 mOsm/L hyperosmolar NaCl medium), 
the wild type-MST3-MDCK (Madin–Darby Canine Kid-
ney) cells survived. In contrast, the KD-MST3-MDCK 
(K53R kinase-dead MST3) cells could not resist the 
hypertonic stress [19], suggesting that MST3-mediated 
maintenance of sodium homeostasis requires its kinase 
activity. Further analysis using mice with MST3 hypo-
morphic mutation demonstrated that the  MST3−/− mice 
exhibit hypernatremia, hypokalemia, and hypertension, 
and MST3 maintained  Na+ homeostasis and blood pres-
sure stability by regulating epithelial  Na+ channel (ENaC) 
[20]. Moreover, Chan et  al. reported that MST3/STK24 
is expressed primarily in the medullary thick ascend-
ing tubule (TAL) and at lower levels in the late distal 
convoluted tubules (DCTs) [43]. The hypertension and 
lower urinary  Na+ excretion found in  MST3−/− mice is 
associated with increased ENaC activity, WNK4 (with-
no-lysine 4) expression, and NKCC2 (Na–K-Cl cotrans-
porter) S130 phosphorylation [43], indicating that MST3 
participates in maintaining the  Na+/K+ homeostasis in 
response to  K+ loading by inhibiting WNK4 expression, 
NKCC2, and ENaC activity.

MST3 and tumor progression
Recently, studies have shown that MST3 deregulation 
is associated with cancer cell migration and metastasis. 
MST3 is overexpressed in the tumor tissues of patients 
suffering from the human breast [4] and gastric cancer 
[7]. The overexpression of MST3 predicts poor progno-
sis in these cancer patients [4, 7], suggesting that MST3 
promotes tumor development and progression. Mecha-
nistically, the overexpression of MST3 increases the 
phosphorylation of VAV2, and subsequently promotes 
VAV2-mediated activation of the Rac1-cyclin D1 sign-
aling pathway that is required for the growth of breast 
cancer cells. Further investigation demonstrated that 
the proline-rich region of MST3  (K353DIPKRP359) inter-
acts with the SH3 domain of VAV2, which is required 
for MST3-mediated promotion of proliferation of these 
cancer cells [4]. Lee et al. reported that the inhibition of 
MST3 expression led to enhanced expression of cyclin-
dependent kinase inhibitor p21, resulting in p21-medi-
ated inhibition of cell cycle in human gastric cancer cell 
line MKN45, but not NCIN87 [7], suggesting that MST3 
promotes tumor cell growth in a cell type-dependent 
manner. In addition, studies have reported an indirect 
role of MST3 in regulating the development of cancer. 
Nuclear Dbf2-related (NDR), a serine/threonine pro-
tein kinase, which directly phosphorylates p21 at S146, 
increases the progression of G1 by stabilizing c-Myc and 
preventing the accumulation of p21. Because NDR is the 
first identified substrate for MST3 (phosphorylates NDR 
at Thr444/Thr442) [51], it suggests that MST3 plays the 
oncogenic role by activating NDR. Furthermore, MST3 
interacts with the evolutionarily conserved MO25 scaf-
folding protein [52], which is the master regulator of 
the LKB1 (serine-threonine liver kinase B1) tumor sup-
pressor [53], indicating the possibility of MST3 in regu-
lating tumor progression by targeting the MO25-LKB1 
pathway. In view of the role of MST3 in promoting can-
cer development, Olesen et  al. have discovered four-
teen chemical compounds as MST3 inhibitors by using 
the kinase domain of MST3 (residues 1–303) to screen 
against the kinase inhibitor library from Selleck Chemi-
cals (Table  4) [54]. This finding indicates that targeting 
MST3 with small-molecule inhibitors may be beneficial 
for controlling disease progression.

Although MST3 has been previously recognized as a 
pro-tumoral protein, the function of MST3 to inhibit 
tumor progression has been reported. Luo et al. reported 
that the down-expression of MST3 by the oncogene 
MiR-222 that directly binds to the promoter region of 
MST3 promotes the migration and invasion of colorec-
tal cancer cell line [55]. Mechanistically, the suppression 
of endogenous MST3 enhances the cellular migration 
in human adenocarcinoma cells, MCF-7, by increasing 
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the phosphorylation of paxillin by a protein tyrosine 
phosphatase PTP-PEST [28]. The suppression of STK24 
increased cell migration by inhibiting CDH1 (E-Cad-
herin) and enhancing the levels of CD44 in gastric cancer 
cells [38]. In addition, an in vivo study reported that the 
suppression of  CD4+ T cells increased tumor metastasis 
and growth in an STK24-silenced mouse model of gastric 
cancer while enhancing the expansion of  CD11b+Ly6C+ 
MDSCs and F4/80+ TAMs [38, 39].

MST3 and CNS development
Proper neuronal migration during cortical development 
is required for normal neuronal function. It is reported 
that MST4 (STK25), a GCKIII family member, promotes 
neuronal migration in the neocortex by balancing the 
Rac1 activity and RhoA levels through the formation of 
complexes with α-PIX and β-PIX, GTPase regulatory 
enzymes, and Cullin3-Bacurd1/Kctd13 [8]. Although the 
conditional knockout of the STK25 gene during mouse 
embryogenesis causes anomalous neuronal migration in 
the neocortex, it did not cause a cortical phenotype, indi-
cating the existence of a complementary mechanism [8]. 
In their subsequent study, they found that MST3 com-
pensates MST4 to regulate neuronal migration and polar-
ization by modulating the activity of Rho GTPases [8]. 
Another study reported that MST3 is highly expressed 
in the developing mouse brain. The overexpression of 
MST3 contributed to radial neuronal migration and final 
neuronal positioning in the developing mouse neocor-
tex. Mechanistically, MST3 regulates neuronal migration 
by negatively regulating Rho-GTPase activity of RhoA, 
because RhoA plays a critical role in actin cytoskel-
etal reorganization by phosphorylating RhoA at Ser26 

[31]. The phosphorylation of MST3 by Cdk5 at Ser79 is 
essential for its kinase activity and function in neuronal 
morphogenesis and migration [31]. Moreover, MST3 
is necessary for the proper development of filopodia, 
dendritic spine, and excitatory synapse in the CNS. The 
MST3-mediated promotion of dendritic filopodia and 
spine synapse development occurs through the phospho-
rylation of TAO1/2 kinases [44].

Recently, a neuron-specific homolog of MST3 (isoform 
a), termed MST3b (isoform b), was reported. Amino 
acid sequence alignment revealed that the six N-ter-
minal amino acids of MST3b are different from that of 
the canonical MST3. The further functional investiga-
tion demonstrated that the MST3b is essential for the 
development and repair of brain circuitry by promoting 
axon outgrowth [56]. Injured spinal cord neurons have 
increased levels of MST3b which promotes neuronal 
regeneration through the activation of P42/44MAPK and 
LIMK/Cofilin signaling pathways [45].

Conclusion
MST3 has emerged as a pleiotropic regulator in modu-
lating a variety of biological functions, such as apopto-
sis, immune signaling, metabolism, hypertension, tumor 
progression, and CNS development. The function of 
MST3-mediated regulation is closely related to protein 
activity-associated activities, such as protein cleavage, 
post-transcriptional modification, subcellular distribu-
tion, and interactions with its several adaptor proteins. 
Therefore, targeting MST3 and its activity-associated 
characteristics can be used as a potential therapeutic 
strategy for controlling the progression of various disease 
processes.
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