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Abstract 

Background Mounting evidence suggests that there is a complex regulatory relationship between long non-coding 
RNAs (lncRNAs) and the glycolytic process during glioma development. This study aimed to investigate the prognos-
tic role of glycolysis-related lncRNAs in glioma and their impact on the tumor microenvironment.

Methods This study utilized glioma transcriptome data from public databases to construct, evaluate, and validate a 
prognostic signature based on differentially expressed (DE)-glycolysis-associated lncRNAs through consensus cluster-
ing, DE-lncRNA analysis, Cox regression analysis, and receiver operating characteristic (ROC) curves. The clusterProfiler 
package was applied to reveal the potential functions of the risk score-related differentially expressed genes (DEGs). 
ESTIMATE and Gene Set Enrichment Analysis (GSEA) were utilized to evaluate the relationship between prognostic 
signature and the immune landscape of gliomas. Furthermore, the sensitivity of patients to immune checkpoint 
inhibitor (ICI) treatment based on the prognostic feature was predicted with the assistance of the Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm. Finally, qRT-PCR was used to verify the difference in the expression of the 
lncRNAs in glioma cells and normal cell.

Results By consensus clustering based on glycolytic gene expression profiles, glioma patients were divided into 
two clusters with significantly different overall survival (OS), from which 2 DE-lncRNAs, AL390755.1 and FLJ16779, were 
obtained. Subsequently, Cox regression analysis demonstrated that all of these lncRNAs were associated with OS 
in glioma patients and constructed a prognostic signature with a robust prognostic predictive efficacy. Functional 
enrichment analysis revealed that DEGs associated with risk scores were involved in immune responses, neurons, neu-
rotransmitters, synapses and other terms. Immune landscape analysis suggested an extreme enrichment of immune 
cells in the high-risk group. Moreover, patients in the low-risk group were likely to benefit more from ICI treatment. 
qRT-PCR results showed that the expression of AL390755.1 and FLJ16779 was significantly different in glioma and 
normal cells.

Conclusion We constructed a novel prognostic signature for glioma patients based on glycolysis-related lncRNAs. 
Besides, this project had provided a theoretical basis for the exploration of new ICI therapeutic targets for glioma 
patients.

Keywords Long noncoding RNAs (lncRNAs), Glioma, Glycolysis, Prognostic signature, Immune landscape, Immune 
checkpoint inhibitor (ICI)

*Correspondence:
Xiaoping Xu
xuxp9@mail2.sysu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13008-023-00092-9&domain=pdf
https://orcid.org/0000-0002-8934-1287


Page 2 of 15Xu et al. Cell Division           (2023) 18:10 

Introduction
Gliomas make up virtually 80% of all lethal primary 
brain tumors, which seriously threatening human health 
and causing a heavy burden to the social economy [18]. 
Despite many advances in deciphering the underlying 
molecular mechanisms of gliomas, the efficacy of clinical 
comprehensive treatment options have reached a bottle-
neck, and as a result, the long‐term survival rate of gli-
oma patients remains poor. The complex heterogeneous 
of tumor and the unique microenvironment of the brain 
present major challenges in treating gliomas. Therefore, 
there remains an urgent need to comprehensively under-
stand the tumor microenvironment and identify a valu-
able biomarker for predicting the prognosis of glioma 
patients, which may lead to the development of new 
potential therapeutics for glioma patients.

Abnormal metabolism and immune evasion are two 
hallmarks of cancer [20]. It has been under extensive 
exploration in the hope of discovering new targets and 
effective therapies. Like other cancers, glioma presents 
a unique metabolic state known as the Warburg effect 
[21]. The exact mechanism of metabolic transformation 
remains unclear, previous studies have showed that the 
metabolic mode can switch during tumor progression. 
Reversal of the Warburg effect could potentially serve 
as a novel therapy for glioma [21, 24]. Recently, stud-
ies have identified alterations in tumor metabolism can 
also contribute to a potent tolerogenic immune environ-
ment [15]. With continued advancement in both of these 
research disciplines, the relationship between tumor 
metabolism and their subsequent influence on immune 
regulation has become increasingly recognized as an 
important factor contributing to tumor growth and pro-
gression. A recently study showed that there is a close 
correlation between the altered metabolic landscape and 
increased activity of infiltrated immune cells within the 
tumor microenvironment [17, 27]. Furthermore, CTLA-4 
blockade has been found to promotes metabolic fitness 
and the infiltration of immune cells, especially in glyco-
lysis-low tumours [31]. These findings suggest that the 
complex interdependencies exist between tumor meta-
bolic and immune responses.

LncRNAs have been reported to be dysregulated in 
various types of cancers, it can regulate cancer cell pro-
liferation, invasion, metastasis, and therapeutic resist-
ance [11]. Tumor glycolysis could be used as a potential 
therapeutic target for cancer [8], the major challenge lies 
in the fact that metabolism is a universal cellular process 
[23]. Accumulating evidence has shown that lncRNAs 
can alter glucose metabolism either directly or indirectly 
[16, 29, 30, 33]. Therefore, lncRNAs are considered as a 
promising strategy for addressing this challenge [2, 7, 13].
The relationship between glycolysis-related lncRNAs and 

glioma prognosis has rarely been studied. A recent study 
identified six glycolysis-related lncRNAs significantly 
related to prognosis of glioma patients through ana-
lyzed CGCA database [25, 26]. However, comprehensive 
analysis focusing on glycolysis-related lncRNAs exerts 
on glioma patients in TCGA, as well as whether these 
glycolysis-related lncRNAs have potential impact on 
immune or not is lacking. In the present study, we imple-
mented studies with transcriptome and clinical data of 
glioma from The Cancer Genome Atlas (TCGA) projects 
to explore the glycolysis-related lncRNAs and immunity 
in glioma, to identify the glycolysis-related lncRNAs and 
relationship between the tumor glycolysis and immune 
cells infiltration on glioma patients.

Results
Consistent clustering of glioma and the survival rate 
of clusters
The study was conducted as described in the flow chart 
(Fig. 1). Consistent clustering analysis of glioma patients 
was performed based on the expression of glycoly-
sis genes in the TCGA database. Finally, patients were 
decided to be divided into 2 sample clusters, with clus-
ter 1 containing 132 samples and cluster 2 containing 512 
samples (Fig. 2A). The K-M suggested a significant differ-
ence in cumulative mortality at 20 years between the two 
subtypes (P < 0.0001; Fig.  2B). In the glioma cohort, the 
best outcome was found in patients classified as cluster 
2. The next question was to determine the relationship 
between sample clustering results and clinicopathological 
data (treatment, age, gender, IDH, grade, and MGMT). 
Matching these results to all clinicopathological charac-
teristics, significant correlations had been noted among 
treatment, age, IDH, grade, MGMT and the two clusters 
(Table  1). In summary, these results appeared to imply 
that glioma could be stratified according to the expres-
sion pattern of glycolysis genes.

Furthermore, we also assessed differences in pathway 
enrichment scores between the two clusters based on the 
KEGG pathway using the ssGSEA algorithm (Additional 
file  6: Table  S6). Unexpectedly, glycolytic (‘Glycolysis/
Gluconeogenesis’) and glycan synthesis and metabolic 
(‘Amino sugar and nucleotide sugar metabolism’, ‘Gly-
cosaminoglycan biosynthesis-keratan sulfate’, ‘Mannose 
type O-glycan biosynthesis’, ‘Galactose metabolism’, 
etc.) pathways were significantly different between the 
two clusters. Also, immune response- (‘cAMP signaling 
pathway’, ‘IL-17 signaling pathway’, ‘Cell adhesion mol-
ecules’, ‘Intestinal immune network for IgA production’, 
etc.) and immune cell (‘Th17 cell differentiation’, ‘Th1 
and Th2 cell differentiation’, etc.)-related pathways were 
notable between Cluster 1 and Cluster 2. Further, PD-L1 
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expression and PD-1 checkpoint pathway in cancer also 
showed substantial variations.

Establishment of a prognostic signature based 
on the DE‑glycolysis‑related lncRNAs
We identified a total of 2 DE-lncRNAs from both sub-
types, relative to cluster 2, lncRNA FLJ16779 was the 
up-regulated gene and lncRNA AL390755.1 was the 
down-regulated gene (Fig. 3A; Additional file 7: Table S7). 
These genes were defined as DE-glycolysis-related lncR-
NAs for the subsequent analysis. To verify whether these 
2 DE-lncRNAs were the risk factors for glioma, we per-
formed a univariate Cox regression analysis in the train-
ing set. Coincidentally, all DE-lncRNAs met P < 0.05 

(Fig.  3B). Subsequently, a multifactorial Cox regression 
analysis with a STEP function indicated these 2 lncRNAs 
as the optimal variables for constructing a prognostic sig-
nature (Fig. 3C). Specifically, AL390755.1 (P = 8.59E−14) 
was possible a risk factor for glioma (HR = 1.38), whereas 
FLJ16779 (P = 1.82E−6) was inferred to be the oncogene 
(HR = 0.77).

Assessment and validation of the effectiveness 
of the prognostic feature
Risk scores were calculated separately for each sample 
in the training and testing sets according to the afore-
mentioned formula, and patients were categorized 
into high- and low-risk groups based on the median 

Fig. 1 Flow chart of the study design
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Fig. 2 A Identification of consistent clustering by glycolysis genes in the TCGA database. B The “Kaplan–Meier”overall survival (OS) curve of two 
clusters defined by consistent expression
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risk score of each set. In both the training and testing 
sets, with increasing risk scores, the number of patient 
deaths climbed sharply (Fig.  4A and D). Subsequently, 

K-M-survival analysis was performed on this prognos-
tic feature, while AUC values were calculated by time-
dependent ROC analysis for the accuracy of which in 
predicting survival, using the outcome variable. In the 
training set, K–M curves could effectively distinguish 
between high-risk and low-risk groups (Fig.  4B), and 
the risk scores all reached an AUC of 0.8 or more at 1 to 
5 years (Fig. 4C). Similar results were also reproduced in 
the testing set (Fig.  4E and F). Based on the expression 
heatmap of the prognostic lncRNAs, which was observed 
in the high-risk group associated with poorer OS, 
AL390755.1 was overexpressed. In contrast, FLJ16779 
was overexpressed in the low-risk group possessing a 
longer OS characteristic. Moreover, we found that the 
vast majority of Cluster 2 patients were in the low-risk 
group. These results suggested that the prognostic sig-
nature was highly sensitive and specific and that these 
signature lncRNAs could be utilized as prognostic bio-
markers in clinically. Furthermore, the statistical tables of 
clinical information in the training and testing sets were 
displayed in Table 2.

Independent prognostic analysis
Here, risk scores and clinicopathological characteristics 
(age, gender, treatment type, cluster, MGMT, grade, and 
IDH) of the full Gliomas sample in the TCGA database 

Table 1 The relationship between sample clusters and clinical 
characteristics of glioma patients

no PRT no Pharmacotherapy and radiotherapy; PT Pharmacotherapy; RT 
radiotherapy

Cluster1 Cluster2 P

Treatment no PRT 16 108 3.04E−05

RT 7 67

PT 6 48

PT + RT 95 247

Age  > 60 56 80 7.33E−11

 < 60 68 390

Gender male 78 262 0.1831

female 46 208

IDH IDH-mut 15 321  < 2.2e−16

IDH-wt 78 89

Grade G2 4 186  < 2.2e−16

G3 19 195

G4 70 29

MGMT Methylated 43 334 3.76E−12

Unmethylated 50 76

Fig. 3 A Volcano plot and heatmap of differentially glycolysis-related lncRNAs in both cluster 1 and cluster 2 subtypes. B Univariate cox regression 
analysis in the training set. C Multifactorial cox regression analysis in the training set
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were included in the Cox analysis to explore their poten-
tial for independent prognosis. Ultimately, age, IDH, 
MGMT, grade, and risk score were identified as inde-
pendent prognostic factors for glioma through univari-
ate and multivariate Cox analyses (Fig. 5A and B). These 
independent prognostic factors were then incorporated 
into the Nomogram to explore the prediction of the 
Nomogram model for patient survival at 1, 3, and 5 years, 
which with a c-index of 0.8705766 (Fig.  5C). The status 
of each variable corresponded to a score, with a higher 
total score for a patient indicating poorer survival for that 
patient. Besides, the calibration curves also demonstrated 
that the Nomogram model was effective in predicting the 
survival of patients (Fig. 5D).

Functional enrichment analysis of risk score‑related DEGs
To further reveal the potential function of prognos-
tic lncRNAs, we first screened 680 risk score-related 
DEGs between high- and low-risk groups (Additional 
file 8: Table S8) and performed GSEA on them to reveal 
potential functions. Figure  6A and B illustrated the 
top10 GO and KEGG results, respectively. GO analysis 
revealed that these DEGs were mainly enriched in terms 
related to immune responses (‘ADAPTIVE IMMUNE 
RESPONSE’, ‘ADAPTIVE IMMUNE RESPONSE 
BASED ON SOMATIC RECOMBINATION OF 
IMMUNE RECEPTORS BUILT FROM IMMUNO-
GLOBULIN SUPERFAMILY DOMAINS’, ‘HUMORAL 
IMMUNE RESPONSE’, ‘NEGATIVE REGULATION 

OF IMMUNE SYSTEM PROCESS’, etc.) and immune 
cell regulation (‘LEUKOCYTE PROLIFERATION’, 
‘REGULATION OF LYMPHOCYTE ACTIVATION’, 
‘REGULATION OF T CELL ACTIVATION’, etc.). 
Notably, a multitude of biological processes associated 
with neurons (‘NEURON PROJECTION TERMINUS’, 
‘NEURON TO NEURON SYNAPSE’, ‘REGULATION 
OF NEURON PROJECTION DEVELOPMENT’, etc.), 
neurotransmitters (‘NEUROTRANSMITTER RECEP-
TOR ACTIVITY’, ‘NEUROTRANSMITTER SECRE-
TION’, ‘NEUROTRANSMITTER TRANSPORT’, 
etc.), and synapses (‘POSTSYNAPTIC MEMBRANE’, 
‘POSTSYNAPTIC NEUROTRANSMITTER RECEP-
TOR ACTIVITY’, ‘POSTSYNAPTIC SPECIALIZA-
TION MEMBRANE’, ‘PRESYNAPTIC MEMBRANE’, 
etc.) were significantly enriched. KEGG results indi-
cated that risk score-related DEGs were significantly 
associated with immune disorders such as ‘AUTO-
IMMUNE THYROID DISEASE’ and ‘SYSTEMIC 
LUPUS ERYTHEMATOSUS’. Consistently, immune 
response-related pathways (‘CYTOKINE CYTOKINE 
RECEPTOR INTERACTION’, ‘PRIMARY IMMU-
NODEFICIENCY’, ‘NATURAL KILLER CELL MEDI-
ATED CYTOTOXICITY’, etc.) were also significantly 
enriched. Moreover, the ‘AMINO SUGAR AND 
NUCLEOTIDE SUGAR METABOLISM’ pathway was 
inevitably featured in the results. More detailed results 
of GO and KEGG analysis were reported in Additional 
file 9: Table S9 and Additional file 10: Table S10.

Fig. 4 Construction of the glycolysis-related LncRNAs signature for survival prediction. A, D Risk score distribution, survival status for patients in 
low- and high-risk groups by the LncRNA signature in training and testing sets. B, E Kaplan–Meier curve based on the identified survival-related 
glycolysis LncRNAs in training and testing sets. C, F ROC curves of the signature for predicting1, 3, 5, 7- year survival of glioma in training and testing 
sets
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Table 2 Clinical information of glioma patients in the training and testing sets

no PRT no Pharmacotherapy and radiotherapy; PT Pharmacotherapy; RT radiotherapy; + methylated, − unmethylated

Training sets p Testing sets p

Total
(N = 417)

Expression Total
(N = 172)

Expression

High
(N = 203)

Low
(N = 214)

High
(N = 88)

Low
(N = 84)

Gender 0.832 0.687

 Female 184
(44.1%)

88
(43.3%)

96
(44.9%)

68
(39.5%)

33
(37.5%)

35
(41.7%)

 Male 233
(55.9%)

115
(56.7%)

118
(55.1%)

104
(60.5%)

55
(62.5%)

49
(58.3%)

Age (years)  < 0.001  < 0.001

  ≥ 60 93
(22.3%)

74
(36.5%)

19
(8.9%)

42
(24.4%)

37
(42.0%)

5
(6.0%)

  < 60 324
(77.7%)

129
(63.5%)

195
(91.1%)

130
(75.6%)

51
(58.0%)

79
(94.0%)

Cluster  < 0.001  < 0.001

 1 86
(20.6%)

82
(40.4%)

4
(1.9%)

36
(20.9%)

34
(38.6%)

2
(2.4%)

 2 331
(79.4%)

121
(59.6%)

210
(98.1%)

136
(79.1%)

54
(61.4%)

82
(97.6%)

Type  < 0.001 0.604

 No PRT 85
(20.4%)

27
(13.3%)

58
(27.1%)

37
(21.5%)

16
(18.2%)

21
(25.0%)

 RT 52
(12.5%)

14
(6.9%)

38
(17.8%)

22
(12.8%)

12
(13.6%)

10
(11.9%)

 PT 38
(9.1%)

6
(3.0%)

32
(15.0%)

16
(9.3%)

7
(8.0%)

9
(10.7%)

 PT + RT 242
(58.0%)

156
(76.8%)

86
(40.2%)

97
(56.4%)

53
(60.2%)

44
(52. 4%)

IDH  < 0.001  < 0.001

 IDHmut-codel 114
(27.3%)

21
(10.3%)

93
(43.5%)

38
(22.1%)

7
(8.0%)

31
(36.9%)

 IDHmut-non-codel 158
(37.9%)

43
(21.2%)

115
(53.7%)

68
(39.5%)

16
(18.2%)

52
(61.9%)

 IDHwt 139
(33.3%)

134
(66.0%)

5
(2.3%)

63
(36.6%)

63
(71.6%)

0
(0%)

 Missing 6
(1.4%)

5
(2.5%)

1
(0.5%)

3
(1.7%)

2
(2.3%)

1
(1.2%)

MGMT  < 0.001 0.001

  + 300
(71.9%)

101
(49.8%)

199
(93.0%)

123
(71.5%)

46
(52.3%)

77
(91.7%)

 – 96
(23.0%)

81
(39.9%)

15
(7.0%)

40
(23.3%)

33
(37.5%)

7
(8.3%)

 Missing 21
(5.0%)

21
(10.3%)

0
(0%)

9
(5.2%)

9
(10.2%)

0
(0%)

Grade  < 0.001  < 0.001

 G2 136
(32.6%)

25
(12.3%)

111
(51.9%)

55
(32.0%)

16
(18.2%)

39
(46.4%)

 G3 148
(35.5%)

75
(36.9%)

73
(34.1%)

64
(37.2%)

29
(33.0%)

35
(41.7%)

 G4 92
(22.1%)

92
(45.3%)

0
(0%)

41
(23.8%)

39
(44.3%)

2
(2.4%)

 Missing 41
(9.8%)

11
(5.4%)

30
(14.0%)

12
(7%)

4
(4.5%)

8
(9.5%)
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Moreover, we illustrated the network of interactions 
of 150 risk score-related DEGs with prognostic lncRNAs 
for |cor|≥ 0.6 and P < 0.05 in Fig.  6C. Among them, 35 
genes were common DEGs for both prognostic lncRNAs 
(Table 3). Elaborately, ARPP21, JPH3, NTNG2, KCNIP3, 
and ELFN2 were positively correlated with lncRNAs 
FLJ16779, but negatively associated with AL390755.1. 
The remaining 30 genes such as EMP3, TNFRSF12A, 
MCUB, and ANXA2 were positively associated with 
lncRNA AL390755.1, but negatively related to FLJ16779.

The impact of risk scores on the immune landscape 
of glioma patients
Inspired by the results of the ssGSEA, we hypothesized 
that prognostic lncRNAs may operate in the patient’s 
immune microenvironment to influence patient out-
comes. ESTIMATE analysis indicated that the immune, 
stromal, and ESTIMATE scores were significantly higher 
in the high-risk group than in the low-risk group, sug-
gesting that the high-risk group had more components 
of the immune microenvironment (Fig. 7A). Subsequent 

immune cell enrichment analysis demonstrated that 
more immune cells, such as Natural killer T cells, Mye-
loid-derived suppressor cell (MDSC), and Type 1T helper 
cell, were presented in the high-risk group (Fig.  7B). 
This evidence suggested that prognostic lncRNAs were 
involved in the altered immune microenvironment of 
patients.

The relationship between risk scores and patient response 
to ICI therapy
Over the past decade, ICIs have proven to be promis-
ing agents for many solid tumor malignancies, adapt-
ing this treatment strategy to an increasingly important 
role in Neuro-oncology [1, 34]. Therefore, we inves-
tigated the potential relationship between risk score 
and the expression of nine ICIs. Seven ICIs, excluded 
LAG3 and TIGIT were detected to have higher expres-
sion levels in the high-risk group, which may be related 
to the higher tumor grade of patients in which group 
(Fig. 7C). The TIDE algorithm then predicted the sensi-
tivity of patients in the high- and low-risk groups to ICI 

Fig. 5 A, B Univariate (A) and multivariate (B) Cox analyses of clinicopathological characteristics and risk score. C Nomogram to predict the 1-, 3-, 
5-year OS. D The calibration curve of the nomogram model prediction
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treatment. TIDE scores were significantly higher in the 
high-risk group than in the low-risk group, suggesting 
that patients in the low-risk group may benefit from ICI 
treatment (Fig. 7D).

Expression of AL390755.1 and FLJ16779 mRNA in NHA, 
U87 and A172 cells
By qRT-PCR validation of the expression of the two 
lncRNAs, we found that the expression of AL390755.1 
was significantly lower in glioma cells than that in NHA 
cells, while the expression of FLJ16779 showed the 
opposite results (Fig. 8).

Discussion
Glioma is one of the most common, aggressive and chal-
lenging malignant tumors in neurosurgery. In this study, 
we identified an efficient prognostic model consisting of 
two glycolysis-related lncRNAs using TCGA databases. 
This model demonstrated strong predictive capacity 
for glioma patient prognosis as patients in the high-risk 
group had poorer overall survival compared to those in 
the low-risk group. Additionally, the nomogram model 
showed superior performance in predicting prognosis. 
GO analysis revealed that DEGs associated with risk 
scores were mainly involved in immune responses and 
immune cell regulation. KEGG results indicated that 

Fig. 6 A, B Top10 GO (A) and KEGG (B) enrichment results by GSEA enrichment analysis. C The lncRNA-mRNA co-expression network by pearson 
correlation analysis. Two lncRNAs (pink rhombus) are connected to their respective co-expressed (|cor|≥ 0.6 and P < 0.05) mRNAs (blue circles) with 
lines (pink: postive correlation; purple: negative correlation)
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risk score-related DEGs were significantly associated 
with immune disorders and immune response-related 
pathways. Immune landscape analysis revealed extreme 
enrichment of immune cells in the high-risk group. Fur-
thermore, patients in the low-risk group appeared to 
benefit more from ICI treatment. These findings suggest 
that glycolysis-related lncRNAs could serve as important 
biomarkers and potenial therapeutic targets for glioma.

Recently, the fields of tumor metabolism and immune 
oncology have received significant attention. Gliomas 

cells display higher levels of glycolytic activities com-
pared with normal brain tissue, particularly in glioblas-
tomas (GBM) [5], which are widely acknowledged to be 
a hallmark of immune cell activation [3]. Zehang Jiang 
et  al. found that there is a positive correlation between 
glycolytic activity and immune score across all 14 can-
cer types, with GBM and LGG having the highest cor-
relation [14]. Previous cancer imaging studies have 
revealed the complex relationship between tumor glu-
cose metabolism rate and immune microenvironment [9, 
19]. Reversing this metabolic program could provide ade-
quate glucose for immune cells to stimulate antitumor 
response. Although checkpoint inhibitors and CAR-T 
cell therapy are currently the most common immuno-
therapies for cancer patients, only 20–40% of patients 
respond to immunotherapy [12, 22], the impact of glu-
cose metabolism shift on immune cell function may be 
another explanation for this issue. Modulating glioma 
metabolism represents a logical therapeutic approach. 
Our study showed that these glycolysis-associated lncR-
NAs were mainly involved in immune responses based 
on functional enrichment analysis. Additionally, immune 
landscape analysis suggested an extreme enrichment of 
immune cells in the high-risk group, patients in the low-
risk group were more likely to benefit from ICI treat-
ment. This observation is consistent with recent findings 
that increased tumor glycolysis suppressed antitumor 
immunity [4], and immunotherapy was more favorable in 
tumors with low glycolysis [17, 27, 31]. Therefore, adjust-
ing cell metabolism along with immunotherapy might be 
an effective treatment regime. However, large cohorts are 
required to verify the association between tumor glycoly-
sis and immunotherapy response.

Several studies have indicated that specific metabo-
lism-related genes may serve as prognostic indicators 
for patients with glioma [6, 10, 25, 26, 32]. In contrast 
to our results, Wang Jia and colleagues identified six 
glycolysis-related lncRNAs in glioma patients based on 
the CGCA database, the best results they obtained had 
ROC-AUC 0.875 and 0.879 for the training and valida-
tion set, respectively [25, 26]. Other models displayed 
best ROC-AUC ranging from 0.847 to 0.873 [10, 32]. 
In contrast, our prediction model achieved ROC-AUC 
0.943 and 0.909 for the training and validation set, 
respectively, while the corrected C-index was 0.8705766, 
suggesting superior accuracy in predicting patient out-
comes. Our identification of these two glycolysis-related 
lncRNAs signatures has substantial clinical significance 
due to their high sensitivity and specificity as prognostic 
biomarkers.

Specifically, we have reported a significant finding that 
FLJ16779 and AL390755.1 were confirmed for the first 
time to be correlated with the prognosis prediction of 

Table 3 List of common risk score-related DEGs for prognostic 
lncRNAs (|cor|≥ 0.6 and P < 0.05)

Gene name Correlation

FLJ16779 AL390755.1

ELFN2 0.696 − 0.623

KCNIP3 0.677 − 0.626

NTNG2 0.637 − 0.645

JPH3 0.625 − 0.614

ARPP21 0.614 − 0.614

EMP3 − 0.669 0.700

TNFRSF12A − 0.615 0.684

MCUB − 0.697 0.679

ANXA2 − 0.630 0.670

ANXA1 − 0.616 0.666

CD58 − 0.636 0.663

RAB42 − 0.626 0.600

FABP5 − 0.633 0.601

MEOX2 − 0.620 0.602

XKR8 − 0.600 0.605

EFEMP2 − 0.626 0.606

DPYD − 0.676 0.606

NAMPT − 0.632 0.610

PPIC − 0.630 0.610

TEAD3 − 0.608 0.616

FAM114A1 − 0.622 0.620

PINLYP − 0.636 0.620

SERPINH1 − 0.609 0.621

RAB34 − 0.669 0.623

OSMR − 0.620 0.628

SRPX2 − 0.652 0.628

GDF15 − 0.671 0.630

TNFAIP6 − 0.650 0.631

S100A4 − 0.634 0.631

STEAP3 − 0.624 0.643

TUBA1C − 0.693 0.647

TIMP1 − 0.694 0.651

PDPN − 0.638 0.655

SMIM3 − 0.668 0.656

IGFBP2 − 0.665 0.657
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glioma. The study of Yongqiang Wang et al. complements 
these findings by establishing a robust three-lncRNA 
model for predicting the OS of gastric cancer patients, 
including OVAAL, FLJ16779 and FAM230D [25, 26], 
suggesting the crucial role of FLJ16779 in predicting the 

prognosis of various types of cancers. Little information 
is available about these glycolysis-related lncRNAs in 
glioma and other tumors, which prompted us to evalu-
ate the potential function by using GSEA. GO and KEGG 
analysis revealed that these DEGs were mainly enriched 
in terms related to immune responses and immune 
response-related pathways. Consequently, we postulate 
that the interaction of these two glycolysis-related genes 
with immune system responses may play a critical role 
in the carcinogenesis and progression of glioma. Thus, 
further experimental trials are warranted to validate 
these preliminary results and address any outstanding 
questions.

In this study, we have identified a two glycolysis-related 
lncRNA signature for predicting the prognosis of glioma 
patients based on TCGA database. This finding pro-
vides a promising avenue for exploring new immune 
checkpoint inhibitor (ICI) therapeutic targets for glioma 
patients. However, there were certain limitations in 
this study. It was only a preliminary study exploring the 
relationship between glycolysis level and immune cell 
infiltration, and the exact mechanism of action and regu-
latory relationship need to be further studied.

Fig. 7 A Comparison of immune, stromal, and ESTIMATE scores between the high-risk group and low-risk group. B Volcano plots for the 
enrichment of immune cell types based on the normalized NES score between low-risk and high-risk patients from the GSEA. C The relationship 
between risk score and the expression of nine ICIs. D Comparison of TIDE scores between the high-risk group and the low-risk group

Fig. 8 Expression of AL390755.1 and FLJ16779 in NHA, U87 and A172 
Cells, ∗p < 0.5, ∗∗p < 0.01, ∗∗∗p < 0.001
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Materials and methods
Data source
A total of 675 samples from The Cancer Genome Atlas 
(TCGA)-lower grade gliomas (LGG) and -Glioblastoma 
(GBM) databases were utilized in this study, of which 
5 were normal samples and 670 were glioma samples. 
Of the glioma samples, 635 samples had survival infor-
mation and 580 samples had complete clinical infor-
mation. Glycolysis genes (Additional file  1: Table  S1) 
were downloaded from the Molecular Signatures Data-
base (MSigDB) for all genes in the glycolytic pathway, 
including BIOCARTA GLYCOLYSIS PATHWAY, GO 
GLYCOLYTIC PROCESS, HALLMARK GLYCOLY-
SIS, KEGG GLYCOLYSIS GLUCONEOGENESIS, and 
REACTOME GLYCOLYSIS [28].

Consistent clustering
The consensus clustering was accomplished in R by 
using the ConsensusClusterPlus package. Selection 
of glioma subtypes based on the expression profile of 
the glycolysis genes employing a k-means clustering 

approach. The optimal number of clusters was decided 
by the cumulative distribution function (CDF) curve of 
the consensus scores and the consensus matrix heat-
map. The Kaplan–Meier (K–M) curve was adopted to 
evaluate the prognosis of the different subtypes and 
P < 0.05 was considered significant.

Pathway analysis of different subtypes
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway identification was performed by single-sample 
gene set enrichment analysis (ssGSEA) to assess pathway 
variations between subtypes. Briefly, ssGSEA calculated 
an enrichment score (ES) for each KEGG pathway in each 
sample within each cluster via the GSVA software pack-
age. Each ssGSEA ES represented the extent to which the 
KEGG pathway was up- or down-regulated in the sample 
(Additional file 2: Table S2).

Differential analysis
The differential expression analysis would be performed 
in R using the limma package to assess the expression 
distribution of lncRNAs in different subtypes. The lncR-
NAs satisfying |log2 fold change (FC)|> 2 and P < 0.05 
were considered as DE-lncRNAs and included in the 
subsequent analysis. Furthermore, genes satisfying |log2 

FC|> 1 and P < 0.05 were considered to be the risk score-
related DEGs between the high- and low-risk groups.

Construction and assessment of the prognostic feature
Here, we worked with a sample of 635 TCGA-glioma 
subjects with survival information. First, we randomly 
divided the sample of 635 cases into a training set 
(n = 445) and an internal validation set (n = 190) in a 
ratio of 7:3. The training set was used to locate prog-
nostic lncRNAs and the assessment of the predictive 
validity of the prognostic feature, and the internal vali-
dation set was only designed to validate the predictive 
validity of the prognostic feature. Subsequently, DE-
lncRNAs screened by univariate Cox regression analy-
sis (P < 0.05) were further included in multivariate Cox 
regression analysis with a step function to determine 
the best variables to use to construct a prognostic fea-
ture. The risk score for each patient in the training and 
internal validation sets was calculated based on the 
coefficient (coef ) value (Additional file 3: Table S3) and 
expression of each prognostic lncRNA as shown in the 
formula below:

Risk score =
e
sum(each gene’s expression levels×corresponding coefficient)

esum (each gene’s mean expression levels×corresponding coefficient)

Patients were categorized into high- and low-risk 
groups based on the median risk score. The K-M analy-
sis for detecting the difference in OS between the high- 
and low-risk groups was used. To assess and validate the 
prognostic predictive validity of the prognostic feature, 
ROC curves were performed in both the training set and 
the internal validation set.

Creation of the Nomogram
Univariate and multivariate Cox analyses were conducted 
to explore the independent prognostic factors in patients 
with glioma. Variables initially included were risk score, 
age, gender, type of treatment (type), IDH mutation type 
(IDH), grade, MGMT status (MGMT), and sub-cluster-
ing (cluster). Ultimately, independent prognostic factors 
identified by multivariate Cox analysis (P < 0.05) would be 
available for the construction of the Nomogram. Addi-
tionally, calibration curves were obtained to assess the 
predictive accuracy of the Nomogram model for patients 
with 1, 3, and 5-year OS.

GSEA in risk score‑related DEGs
Gene Ontology (GO) and KEGG analysis of risk score-
related DEGs was implemented based on R software 
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using GSEA in the clusterProfiler package. Here, as 
functional enrichment studies of lncRNAs are not yet 
straightforward, we focused on potential functions with 
risk score-related DEGs to understand the biological pro-
cesses and pathways that lncRNAs may be involved in. 
GO analysis was used to reveal the potential biological 
functions of risk score-related DEGs, while KEGG was 
responsible for the enrichment of the pathways.

lncRNA‑mRNA network
Due to the large size of risk score-related DEGs, we fil-
tered out risk score-related DEGs that were strongly cor-
related with prognostic lncRNAs (|coefficient (cor)|≥ 0.6 
and P < 0.05) using Pearson correlation analysis (Addi-
tional file 4: Table S4 and Additional file 5: Table S5). The 
lncRNA-mRNA network was then mapped and embel-
lished using Cytoscape software.

Immune landscape analysis
The stromal score, immune score, and ESTIMATE score 
for each sample (n = 635) were calculated by applying the 
estimate R package. Further Wilcoxon tests were per-
formed to assess the relationship between these scores 
and risk score  (nhigh-risk = 317,  nlow-risk = 318).

In addition, we performed a GSEA using the cluster-
Profiler package to identify immune cell types that dif-
fered between the high- and low-risk groups. Briefly, 
genes between the high- and low-risk groups were sorted 
by |log2 FC| and then GSEA of immune cells was per-
formed. The normalized ES (NES) was used to identify 
differences in immune cell types between the two groups.

Cell culture and qRT‑PCR
NHA were purchased from Lonza and cultured using an 
AGM Bullet Kit™ (Lonza, Walkersville, MD) as recom-
mended by the manufacturer. U87 and A172 cells were 
purchased from ATCC and were cultured in Dulbecco’s 
modified.

Eagle’s medium (Gibco, Carlsbad, CA) containing 10% 
fetal bovine serum.

(Gibco, Carlsbad, CA) according to standard proto-
cols. Then, place the cells in a 37 °C, 5% CO2 incubator 
for culture. Change the medium once a day. The RNA 
is extracted when the cells grow to 80% confluent. Use 
TRIzol (ThermoFisher Scientific, USA) to extract total 
cell RNA. Follow the steps of PrimeScrip reverse tran-
scription kit (Takara, Japan) to reverse transcription into 
cDNA. Configure the PCR reaction system and analyze 
it according to the SYBR Premix Ex Taq (Takara, Japan) 
instruction. Human actin was used as an endogenous 
control, the relative gene expression was calculated by 

the 2 −ΔΔCt method. Primer sequence utilized for the qRT-
PCR analysis is listed in Table 4. Repeat the experiment 3 
times independently for each sample.

Statistical analysis
Survival analysis was performed in the survival package. 
The ggplot2 package was used to plot volcanoes. pROC 
was used for ROC curve generation. Nomograms were 
obtained using the rms package. Sensitivity prediction 
for ICI treatment was achieved through the TIDE online 
website (http:// tide. dfci. harva rd. edu/). R software was 
employed for statistical analysis and P < 0.05 was consid-
ered statistically significant.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13008- 023- 00092-9.

Additional file 1. Glycolysis genes download from the Molecular 
Signatures.

Additional file 2. Enrichment score for each KEGG pathway in each 
sample within each cluster.

Additional file 3. Differentially expressed lncRNAs screened by multivari-
ate Cox regression analysis.

Additional file 4. Genes strongly correlated with AL390755.1 using Pear-
son correlation analysis. (|coefficient (cor)| ≥ 0.6 and P < 0.05).

Additional file 5. Genes strongly correlated with FLJ16779 using Pearson 
correlation analysis. (|coefficient (cor)| ≥ 0.6 and P < 0.05)

Additional file 6. Pathway enrichment scores between the two clusters.

Additional file7. Differentially expressed glycolysis-related lncRNAs 
between Cluster1 and Cluster2.( |log2 (fold change)| > 2 and P_value 
< 0.05).

Additional file 8. Risk score-related differentially expressed genes 
between high- and low-risk groups.

Additional file 9.  GO results of risk score-related differentially expressed 
genes.

Additional file 10. KEGG results of risk score-related differentially 
expressed genes.

Acknowledgements
We acknowledge TCGA database for providing their platforms and contribu-
tors for uploading their meaningful datasets.

Table 4 qRT-PCR primer sequence

Primer sequences (5′–3′)

AL390755.1 Forward: ACC CAT CTT ATC CAG GGG CT

Reverse: CCT CAC ATC GCT GTC CCT TT

FLJ16779 Forward: TTT AGT GCC TAG CAG CAG CC

Reverse: CCA CAG CCC TAA CCT GTA CG

Human actin Forward: GAC AGG ATG CAG AAG GAG ATT ACT 

Reverse: TGA TCC ACA TCT GCT GGA AGGT 
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