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Role of microRNAs in regulation 
of doxorubicin and paclitaxel responses in lung 
tumor cells
Amirhosein Maharati1 and Meysam Moghbeli2* 

Abstract 

Lung cancer as the leading cause of cancer related mortality is always one of the main global health challenges. 
Despite the recent progresses in therapeutic methods, the mortality rate is still significantly high among lung cancer 
patients. A wide range of therapeutic methods including chemotherapy, radiotherapy, and surgery are used to treat 
lung cancer. Doxorubicin (DOX) and Paclitaxel (TXL) are widely used as the first-line chemotherapeutic drugs in lung 
cancer. However, there is a significant high percentage of DOX/TXL resistance in lung cancer patients, which leads 
to tumor recurrence and metastasis. Considering, the side effects of these drugs in normal tissues, it is required to clar-
ify the molecular mechanisms of DOX/TXL resistance to introduce the efficient prognostic and therapeutic markers 
in lung cancer. MicroRNAs (miRNAs) have key roles in regulation of different pathophysiological processes includ-
ing cell division, apoptosis, migration, and drug resistance. MiRNA deregulations are widely associated with chemo 
resistance in various cancers. Therefore, considering the importance of miRNAs in chemotherapy response, in the pre-
sent review, we discussed the role of miRNAs in regulation of DOX/TXL response in lung cancer patients. It has been 
reported that miRNAs mainly induced DOX/TXL sensitivity in lung tumor cells by the regulation of signaling path-
ways, autophagy, transcription factors, and apoptosis. This review can be an effective step in introducing miRNAs 
as the non-invasive prognostic markers to predict DOX/TXL response in lung cancer patients.
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Background
Lung cancer is the most frequent cancer and is respon-
sible for the highest number of cancer-related deaths in 
the world [1]. Despite the recent progresses in molecu-
lar targeted therapies and surgical techniques, the overall 
5-years survival rate is still around 15% for lung cancer 
patients [2]. Non-small cell lung cancer (NSCLC) is the 
most frequent lung tumor type accounting for 85% of 

all cases [1, 3]. Targeted drugs have efficient therapeutic 
benefits for NSCLC patients; however, drug resistance 
is a frequent challenge that is finally observed among a 
large proportion of NSCLC patients [4, 5]. Cisplatin, 
carboplatin, paclitaxel, docetaxel, gemcitabine, and 
pemetrexed are the frequently used chemotherapeutic 
options for NSCLC patients [6–8]. DNA-damaging fac-
tors are the most commonly used types of chemothera-
peutic drugs [9, 10]. They prevent cell proliferation while 
induce cell death by the suppression of the double-strand 
breaks rejoining [11]. Microtubule targeting agents 
(MTAs) are also conventional chemotherapeutic drugs 
for NSCLC patients. They bind to microtubules at vari-
ous sites to disrupt their dynamics and structure, result-
ing in cell cycle arrest and subsequent cell death [12, 
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13]. Doxorubicin is considered as an inhibitor of DNA 
synthesis and transcription by targeting topoisomer-
ase II that results in cell cycle arrest and apoptosis [14, 
15]. The combination of doxorubicin with other chemo-
therapeutic drugs is a standard therapeutic regimen for 
lung carcinoma [16]. Nevertheless, the emergence of 
drug resistance has impaired its efficacy as a therapeu-
tic agent [17]. Doxorubicin as an anthracycline is fre-
quently used to treat SCLC patients. Despite more than 
half of the patient’s response to drug, the median survival 
of SCLC patients is approximately 10–12 months in pri-
mary tumor stage [18–20]. Paclitaxel (PTX) is a critical 
therapeutic option for the advanced stage NSCLC [21]. It 
functions by binding to the β subunit of tubulin to inhibit 
the establishment of microtubules that results in cell 
cycle disruption and apoptosis [22]. However, the devel-
opment of resistance to paclitaxel leads to treatment fail-
ure and reduced survival rates for patients. As the poor 
prognosis is associated with advanced stages and drug 
resistance in lung cancer, it is required to introduce the 
novel diagnostic and prognostic biomarkers to improve 
the therapeutic strategies in these patients. MiRNAs are 
small non-coding RNAs that are found in all eukaryotic 
cells and play a vital role in post-transcriptional inhibi-
tion of target mRNAs [23, 24]. MiRNAs have pivotal 
roles in lung tumor progression by regulation of various 
cellular processes such as cell proliferation, angiogen-
esis, and epithelial-mesenchymal transition (EMT) [25, 
26]. They are implicated in drug resistance by affecting 
various cellular processes such as cell survival, apoptosis, 
angiogenesis, and migration [27]. MiRNAs deregulations 
are associated with chemo resistance in various cancers 
[28, 29]. Therefore, in the present review we discussed 
the role of miRNAs in DOX/TXL responses in lung 
tumor cells to introduce them as the probable non-inva-
sive prognostic markers in lung cancer patients (Table 1). 
Web of Science, Embase, PubMed, Cochrane Library, and 
Google scholar were searched and assessed until the May 
2023 without language limitations. The reference lists 
were also manually searched for the relevant publications 
including the review articles and original researches. 
The search strategy was based on “microRNA”, “Doxoru-
bicin”, “Paclitaxel”, “Drug resistance”, and “Lung cancer” 
keywords.

Signaling pathways
MiRNAs are involved in DOX/TXL response of lung 
tumor cells via the regulation of signaling pathways 
(Fig. 1). PI3K/AKT is one of the main oncogenic signaling 
pathways that is directly associated with the extracellular 
growth factors. It is mainly triggered by the activation 
of receptor tyrosine kinases (RTKs) that subsequently 
activates PI3K/AKT/mTOR axis [30]. EGFR belongs to 

the RTK protein family that has a key role in cell prolif-
eration by activation of PI3K/AKT and MAPK signaling 
pathways. MiR-7 attenuated NSCLC progression via tar-
geting several oncogenes, such as PAK1, EGFR, RAF1, 
IRS1, and IRS2 that resulted in inhibition of the EGFR/
AKT axis [31–34]. Activation of EGFR downstream path-
ways, including STAT, PI3K/AKT, and MAKP intensifies 
the chemo resistance of tumor cells [32, 34–38]. It has 
been reported that miR-7 increased the PTX sensitiv-
ity via EGFR targeting in NSCLC cells [39]. PTEN is a 
negative regulator of the PI3K/Akt axis and is frequently 
down regulated or mutated in lung cancer [40, 41]. MiR-
4262 promoted PTX resistance through PTEN targeting 
and subsequent PI3K/AKT activation in NSCLC cells 
[42]. MiRNA-181a has been identified as a contributor to 
the acquisition of EMT, as well as increased invasion and 
migration in lung adenocarcinoma cells through PTEN 
targeting. MiR-181a also increased the sensitivity of can-
cer cells to paclitaxel treatment [43]. Reactive oxygen 
species (ROS) is involved in VEGF induced activation of 
the PI3K/AKT axis [44, 45]. Rac1 belongs to the Rho pro-
tein family that regulates growth factors and cytokines 
[46]. P21-activated kinase (PAK1) is a ser/thr kinase that 
interacts with Rac1 and Cdc42 [47]. EGF promotes tumor 
cell migration by Rac1 mediated activation of PI3K/Akt 
and PAK1 [48]. Long noncoding RNAs (lncRNAs) are a 
class of non-coding RNAs that have pivotal roles in regu-
lation of cell growth, angiogenesis, survival, and motil-
ity [49–51]. The significant up regulation of LCAT1 has 
been reported in lung cancer tissues that were associated 
with unfavorable prognosis. LCAT1 enhanced the lung 
tumor growth through the miR-4715-5p/RAC1 axis. The 
reduction of RAC1 activity hindered the cell proliferation 
and mobility and its function was regulated by PAK1. 
Both RAC1 and PAK1 were found to be reduced in cells 
with elevated levels of miR-4715-5p and in cells where 
LCAT1 was silenced. EHop-016 as a Rac GTPase inhibi-
tor reduced the viability of lung tumor cells. The efficacy 
of EHop-016 and paclitaxel in treating lung cancer cells 
was improved when they were used in combination. 
EHop-016 as an adjuvant therapy enhanced the paclitaxel 
efficacy in lung cancer patients who had LCAT1 up regu-
lation [52].

JAK/STAT pathway has a critical role in cell prolif-
eration, inflammation, and apoptosis. IL-6 activates the 
JAK2 that promotes the STAT3 dimerization and nuclear 
transportation to regulate the JAK/STAT target genes 
[53]. STAT3 is a key regulator of cancer-related inflam-
mation and tumor progression [54]. It promotes tumor 
cell growth, invasion, immunosuppression, angiogen-
esis, and drug resistance [55]. STAT3 also promotes 
tumorigenesis by inhibiting cell death via Bcl-xL and 
Bcl-2 up regulations [56]. MiR-9600 enhanced paclitaxel 
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Table 1 Role of miRNAs in regulation of DOX and TXL responses in lung tumor cells

miRNA Target Samples Results Clinical application Study Year

Signaling pathways

 miR-7 EGFR 20 T 20N*
A549, H1395, 95C and 95D 
cell lines

Increased Paclitaxel sensitivity Diagnosis Liu [39] 2014

 miR-4262 PTEN 20 T 20N
A549, H1299, A549/PTX 
and H1299/PTX cell lines
Xenograft model

Increased Paclitaxel resist-
ance

Diagnosis Sun [42] 2019

 miR-181a PTEN A549, A549/PTX, and A549/
DDP cell lines

Increased Paclitaxel resist-
ance

Diagnosis Li [43] 2015

 miR-4715-5p RAC1 25 T 25N
A549, Calu1, H1299, 
and HOP62 cell lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis Yang [52] 2019

 miR-9600 STAT3 144 T 20N
A549, SPC-A-1, H1299, 
SK-MES-1, NCI-H520, 95D 
and 16HBE cell lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis and prognosis Sun [57] 2016

 miR-1247-3p STAT5A 162 T 162N
NCI-H1299, NCI-H1395, A549, 
NCL-H460, PG49, NCI-H1993 
cell lines
Xenograft model

Increased Doxorubicin 
sensitivity

Diagnosis and prognosis Lin [59] 2022

 miR-337-3p RAP1A H1155, H1299, H1819, H1993, 
HCC2935, and HCC515 cell 
lines

Increased Paclitaxel sensitivity Diagnosis Du [67] 2012

 miR-34c NOTCH1 30 T 30N
A549, H1299, and 293 T cell 
lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis Yang [69] 2020

Transcription factors and DNA binding proteins

 miR-138 ZEB2 A549, NCI-H23, A549/ADM 
and NCI-H23/ADM cell lines

Increased Doxorubicin 
sensitivity

Diagnosis Jin [73] 2016

 miR-194-5p HIF-1 H460 and A549 cell lines Increased Doxorubicin 
sensitivity

Diagnosis Xia [75] 2021

 mR-608 TFAP4 37 T 37N
96 T serum 136N serum
A549 and HCC4006 cell lines

Increased Doxorubicin 
sensitivity

Diagnosis Wang [81] 2019

 miR-935 SOX7 30 T 30N
A549 cell line

Increased Paclitaxel resist-
ance

Diagnosis Peng [88] 2018

 miR-30c MTA1 A549 and H460 cell lines Increased Paclitaxel sensitivity Diagnosis Lu [97] 2017

 miR- 137 NUCKS1 50 T 50N
A549, A549/PTX and A549/
CDDP cell lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis and prognosis Shen [104] 2016

Structural factors

 miR-200c CTSL A549 and A549/TAX cell lines Increased Paclitaxel sensitivity Diagnosis Zhao [114] 2018

 miR-421 KEAP1 129 T 129N
10 T serum 10N serum
A549, H358, H1650, H460, 
and H1975 cell lines
Xenograft model

Increased Paclitaxel resist-
ance

Diagnosis and prognosis Duan [119] 2019

 miR-223 FBW7 A549, NCI-H358, NCI-H1299 
and HCC827 cell lines

Increased Doxorubicin resist-
ance

Diagnosis Li [126] 2016

 miR-490-5p UBE2T 50 T (20R 30S) 50N
H1299 and A549 cell lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis Wang [129] 2023
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sensitivity of NSCLC through targeting STAT3 that 
resulted in CDK2, CCND1, cyclin E, and p-RB down 
regulations [57]. STAT5A is a transcription factor that 
participates in cell proliferation, migration, and aggres-
siveness [58]. MiR-1247-3p has been reported to be 
down regulated in lung adenocarcinoma tissues that were 
associated with advanced stages and metastatic tumors. 
It suppressed Doxorubicin resistance in lung tumor cells 
via STAT5A targeting [59]. RAP1A as one of the RAP1 

isoforms is involved in regulation of microtubule dynam-
ics. RAP1 triggers the MAPK/ERK axis and phosphoryl-
ates microtubule-associated proteins such as MAP2 and 
MAP4 [60–64]. It can also regulate the paclitaxel sen-
sitivity of tumor cells via extracellular matrix and cell 
interactions [65, 66]. MiR-337-3p increased the paclitaxel 
sensitivity of lung tumor cells via STAT3 and RAP1A 
targeting. STAT3 antagonized microtubule depolymeri-
zation by binding to stathmin, while RAP1A suppressed 

*Tumor (T) and normal (N) tissues

Table 1 (continued)

miRNA Target Samples Results Clinical application Study Year

 miR-558 MMP1/MMP17 46 T 46N
A549, H1299, H358, and PC9 
cell lines

Increased Paclitaxel resist-
ance

Diagnosis Li [131] 2021

 miR-197-3p p120-ctn 326 T 326N
A549, H1299, H460 and SPC-
A-1 cell lines
Xenograft model

Increased Paclitaxel and Dox-
orubicin sensitivity

Diagnosis and prognosis Yang [137] 2019

 miR-708-5p COX-2/mPGES-1 A549, A549-ER, and A549-PR 
cell lines

Increased Paclitaxel sensitivity Diagnosis Monteleone [143] 2020

 miR-486-3p CRABP2 65 T (30R 35S) 65N
A549 and H1299 cell lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis Wu [144] 2022

 miR-526b-5p GRK5 65 T 65N
A549, H3122, H1975, 
and H2342 cell lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis Liu [146] 2021

 mR-299-3p ABCE1 20 T 20N
NCI-H69 cell line

Increased Doxorubicin 
sensitivity

Diagnosis Zheng [149] 2015

Apoptosis and DNA repair

 miR-1273f MDM2 20 T 20N
A549 and A549/Taxol cell 
lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis and prognosis Xu [153] 2021

 miR-107 Bcl-w A549 and HEK 293 T cell lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis Lu [161] 2017

 miR-30a-5p BCL-2 94 T 94N
A549, H460, A549/PR, 
and H460/PR cell lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis and prognosis Xu [162] 2017

 miR-7-5p PARP1 H69, H69AR, and H446AR Increased Doxorubicin 
sensitivity

Diagnosis Lai [167] 2019

 miR-195 CHEK1 57 T 57N
H1155, H1993 and H358 cell 
lines
Xenograft model

Increased Paclitaxel sensitivity Diagnosis and prognosis Yu [169] 2018

 miR-433-3p CHEK1 41 T 41N
A549, H1299, A549/PTX 
and H1299/PTX cell lines

Increased Paclitaxel sensitivity Diagnosis Jin [170] 2022

Autophagy and drug efflux

 miR-17-5p Beclin1 A549, H596, A549-T24, 
and H596-TxR cell lines

Increased Paclitaxel sensitivity Diagnosis Chatterjee [180] 2014

 miR-199a-5p ATG5 A549, H1299, H661, H522, 
H1944, and A549/T cell lines

Increased Paclitaxel resist-
ance

Diagnosis Zeng [183] 2021

 miR-155 AKT/ERK A549 and A549/dox cell lines Increased Doxorubicin resist-
ance

Diagnosis Lv [189] 2016
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microtubule polymerization via triggering ERK/MAPK 
and MAP2 and MAP4 phosphorylations. Depletion of 
RAP1A or STAT3 disrupted normal microtubule dynam-
ics that sensitized tumor cells toward the microtubule-
targeting agents. Therefore, paclitaxel treatment and 
RAP1A/STAT3 down regulation synergistically disrupted 
microtubule function, resulting in G2/M arrest and cell 
death [67].

NOTCH is a developmental signaling pathway that has 
critical roles in embryogenesis and tumor progression. 
It can be triggered by activation of NOTCH receptors 
that releases the NICD into the cytoplasm. Subsequently, 
NICD enters into the nucleus and regulate the NOTCH 
target genes by MAML/CSL transcriptional machinery 
[68]. There was significant miR-34c down regulation in 
NSCLC tissues. MiR-34c sensitized the NSCLC cells to 
paclitaxel and cisplatin through the NOTCH1 targeting 
[69].

Transcription factors and DNA binding proteins
MiRNAs are involved in DOX/TXL response of lung 
tumor cells via the regulation of transcription factors 
and DNA binding proteins (Fig. 2). EMT has a key role 
in NSCLC progression and chemotherapy response, 
by which tumor cells lose their epithelial features and 
acquire a mesenchymal and aggressive phenotype [70]. 
ZEB2 belongs to the zinc finger homeobox protein family 

that regulates the tumor progression and chemotherapy 
response [71]. ZEB2 suppresses the CDH1 to promote 
tumor cell invasion and chemo resistance. However, the 
inhibition of ZEB2 by several miRNAs can effectively 
reverse this effect and lead to the suppression chemo 
resistance [72]. There was miR-138 down regulation in 
chemo resistant NSCLC cells. MiR-138 up regulated 
the E-cadherin while down regulated the Vimentin to 
sensitize NSCLC cells to DOX via ZEB2 targeting [73]. 
HIF1A as a basic helix-loop-helix protein is the master 
regulator of hypoxia response that mediates drug resist-
ance via up regulation of P-glycoprotein (P-gp) [74]. 
There was significant down regulation of miR-194-5p 
in yypoxia-induced DOX-resistant NSCLC cells. MiR-
194-5p directly targeted HIF-1, which subsequently 
impaired the expression of downstream proteins, such 
as P-gp, to enhance the sensitivity of NSCLC cells to 
DOX. In addition, miR-194-5p regulated the expression 
of several apoptotic proteins such as PARP and BAX that 
increased DOX-mediated apoptosis of NSCLC cells [75]. 
TFAP4 is a transcription factor that is involved in pro-
gression of various human cancers [76–79]. It promotes 
tumor cell proliferation and metastasis, while represses 
the cell death [79, 80]. It has been shown to activate the 
Wnt/β-catenin pathway to enhance hepatocellular carci-
noma progression [80]. There was miR-608 down regula-
tion in NSCLC samples. MiR-608 facilitated doxorubicin 

Fig. 1 Role of miRNAs in DOX/TXL responses via regulation of signaling pathways and autophagy in lung tumor cells. (Created with BioRender.
com)
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mediated apoptosis in NSCLC cells by targeting TFAP4 
[81]. SOX7 is a transcription factor that regulates the cell 
differentiation, proliferation, migration, and apoptosis 
and acts as a tumor suppressor in different cancers [82, 
83]. In lung cancer, reduced expression of SOX7 is asso-
ciated with an unfavorable prognosis [84]. Additionally, 
SOX7 physically interacts with β-catenin and transcrip-
tion factor 4 to inhibit the Wnt pathway and stemness 
[85]. Down regulation of SOX7 promotes tumor cell 
stemness and chemo-resistance [86]. PI3K/Akt axis is 
a key regulator of cell migration, growth, death, and 
blood vessel formation [87]. MiR-935 silencing increased 
paclitaxel mediated apoptosis in NSCLC cells by SOX7 
targeting. This intervention down regulated Bcl-2 and 
p-AKT while up regulated Bax [88]. MTA1 is a member 
of chromatin remodeling complexes that has key roles 
in nucleosome remodeling and transcriptional regula-
tion [89]. Curcumin inhibits the tumor cell growth while 
promotes the programmed cell death [90–92]. It has been 

shown that Curcumin functions as an anti-tumor drug 
by modulating signaling pathways, transcription factors, 
and miRNAs [93–96]. According to a recent investiga-
tion, Curcumin enhanced the response of NSCLC cells to 
Paclitaxel by MTA1 down regulation following the miR-
30c-5p up regulation [97]. NUCKS1 is a DNA-binding 
protein that is a nuclear substrate for DNA-activated 
Kinase, CDK1, and CK2 [98–101]. It has a key role in reg-
ulation of cell cycle progression and transcription dur-
ing rapid cell growth [102, 103]. MiR-137 promoted PTX 
sensitivity through NUCKS1 targeting in lung tumor cells 
[104].

Structural factors
Cathepsin L (CTSL) belongs to the papain-like cysteine 
protease family that is associated with the tumor progres-
sion [105–107]. It has a crucial role in the various activi-
ties of tumor cells, including cell proliferation, migration, 
viability, invasion, and drug resistance [108–110]. CTSL 

Fig. 2 Role of miRNAs in DOX/TXL responses via regulation of transcription factors, ubiquitination, proteases, and DNA repair in lung tumor cells. 
(Created with BioRender.com)
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as an EMT regulator alters the aggressiveness and migra-
tion of tumor cells [111]. CTSL also affects drug resist-
ance via EMT-associated transcription factors, such as 
ZEB1, ZEB2, Slug, and Snail [112]. EMT is regulated by 
several transcription factors such as Twist, ZEB1, ZEB2, 
and Snail/Slug [113]. MiRNA-200c suppression reduced 
paclitaxel sensitivity in lung tumor cells via the up regula-
tion of EMT-related transcription factors. MiRNA-200c 
inhibited EMT and subsequently improved the response 
to paclitaxel in lung tumor cells through CTSL targeting 
[114].

MiRNAs are involved in DOX/TXL response of lung 
tumor cells via the regulation of protein ubiquitina-
tion (Fig. 2). ROS is implicated in both targeted-therapy 
resistance and chemical resistance that introduce the 
redox pathway as a reliable tumor therapeutic target [21–
25]. KEAP1 acts as an adaptor for substrates by attaching 
to the CuI3-containing E3 ubiquitin ligase and destruct-
ing them through the proteasome pathway [115]. KEAP1 
is modified due to ROS-induced oxidative stress, which 
releases Nrf2 from the KEAP1-Cul3 E3 ligase complex 
[116]. Subsequently, Nrf2 moves into the nucleus and 
binds to the antioxidant response element along with 
a small-Maf binding partner [117, 118]. KEAP1 down 
regulation was contributed to paclitaxel resistance in 
NSCLC through the up regulation of miR-421. β-catenin 
mediated transcription also up regulated the miR-421 
[119]. EMT is a multifaceted and reversible process that 
induces a mesenchymal morphology while reduces the 
epithelial cell adhesion [120]. FBW7 functions as the sub-
strate recognition component in SCF E3 ligase complex 
[121]. FBW7 modulates several oncoproteins, includ-
ing c-Myc, c-Jun, Notch, and CCNE1 [122, 123]. F-box 
proteins are involved in EMT by modulating inducers 
and transcription factors [124, 125]. The miR-223/FBW7 
axis has been found to enhance doxorubicin sensitivity 
by regulating EMT in NSCLC cells. Doxorubicin treat-
ment induced EMT in NSCLC cells, but knockdown of 
Twist hindered this transition through CDH1 up regula-
tion and Vimentin down regulation. Moreover, hypoxia-
induced EMT and increased resistance to doxorubicin 
was accompanied by the reduced levels of FBW7 and 
E-cadherin while increased Vimentin expression [126]. 
UBE2T functions as a E2 ubiquitin-conjugating enzyme 
that catalyzes the ubiquitination of FANCD2 in DNA 
damage response [127]. Circular RNAs (circRNAs) are a 
type of non-coding RNA with a stable covalently closed-
loop structure [128]. Circ_0092887 inhibiting decreased 
cell growth and migration, while increased apoptosis 
in NSCLC cells treated with PTX. Circ_0092887 regu-
lated the PTX resistance via miR-490-5p/UBE2T axis in 
NSCLC [129]. Matrix metalloproteinases (MMPs) are 
the key enzymes that break down extracellular matrix 

(ECM) and collagen to promote tumor angiogenesis and 
metastasis [130]. Circ_0030998 reduced Taxol resist-
ance by miR-558/MMP1 and MMP17 axes in lung tumor 
cells [131]. The p120-catenin (p120-ctn) interacts with 
EMT marker E-cadherin to enhance the lung tumor 
cell proliferation [132]. It has a pivotal role in modifica-
tion of the intercellular adhesion and EMT process by 
interaction with E-cadherin [133–135]. It also bound to 
cellular structures such as microtubules and cytocen-
trum to suppress the cell proliferation [136]. There was 
MALAT1 up regulation in NSCLC tissues that was cor-
related with poor survival. MALAT1 was associated 
with resistance to chemotherapeutic drugs such as TXL, 
gefitinib, DOX, and CDDP. It promoted the cell growth 
and survival while induced the EMT process in NSCLC 
cells via miR-197-3p/p120-ctn pathway [137]. ITGB8 is 
a fibronectin receptor that is involved in cell-cell inter-
actions. There were circDNER up regulations in tumor 
tissues and plasma exosomes of lung cancer patients. It 
also promoted the paclitaxel resistance through the miR-
139-5p sponging and subsequent ITGB8 up regulation in 
lung tumor cells [138].

Arachidonic Acid (AA) pathway regulates the cell pro-
liferation, immunity, and homeostasis [139]. COX-1 or 
COX-2 convert free cytosolic AA to PGH2 [140]. PGE2 
has a critical oncogenic role via activation of PI3K/
AKT, MAPK, β-catenin, and NF-kB signaling pathways 
[141, 142]. CHOP is a member of the C/EBP transcrip-
tion factors involved in adipogenesis and erythropoiesis. 
Chemotherapy up regulated miR-708-5p while down 
regulated the AA pathway in lung tumor cells. CHOP 
and p53 were the transcription factors involved in regula-
tion of chemotherapeutic-mediated miR-708-5p expres-
sion. MiR-708-5p also up regulated the p53 and CHOP 
via a positive feedback loop. There was COX-2 up regu-
lation while miR-708-5p down regulation in paclitaxel 
resistant lung tumor cells. MiR-708-5p played a tumor 
suppressive role by COX-2, mPGES-1, and Survivin tar-
geting that resulted in immune evasion [143]. CRABP2 
is a retinoic acid binding protein that functions as a 
cytosol-to-nuclear shuttle to facilitate RA nucleus trans-
fer. Circ_0011298 promoted Taxol resistance via miR-
486-3p/CRABP2 axis in NSCLC cells [144].

G protein-coupled receptor kinase 5 (GRK5) belongs 
to the serine/threonine kinase protein family that is 
involved in sensing various internal stimuli and regula-
tion of the subsequent signaling pathways [145]. There 
was circ_0001821 up regulation in NSCLC tissues that 
was correlated with poor prognosis. Circ_0001821 block-
ing inhibited the TAX resistance, colony formation, 
and tumor proliferation via miR-526b-5p/GRK5 axis in 
NSCLC cells [146]. ABCE1 is a protein that belongs to 
the ATP-binding cassette (ABC) family and suppresses 
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the RNase L as and interferon-induced nuclease in mam-
malian cells. ABCE1 is a potential tumor suppressor that 
is involved in regulation of cell proliferation and apopto-
sis [147, 148]. It has been indicated that miRNA-299-3p 
enhanced the doxorubicin-sensitivity in lung cancer via 
targeting ABCE1. There was miR-299-3p down regula-
tion in doxorubicin-resistant lung tumor tissues com-
pared with the sensitive tissues [149].

Apoptosis and DNA repair
Tumor cells develop paclitaxel resistance through the 
various processes such as increased DNA repair, cell 
cycle regulation, and anti-apoptotic pathways [150–
152]. MiRNAs are involved in DOX/TXL response of 
lung tumor cells via the regulation of apoptosis (Fig. 2). 
Mouse double minute 2 homolog (MDM2) is an E3 ubiq-
uitin ligase that has a key role in p53 inhibition. There 
was circ_0002874 up regulation in NSCLC tissues that 
was correlated with higher stages. Although, there was 
MDM2 down regulation in NSCLC tissues compared 
with normal counterparts, increased expression of 
MDM2 was associated with TNM staging. Circ_0002874 
induced paclitaxel resistance by miR-1273f/MDM2 axis 
in NSCLC cells [153]. Bcl-w belongs to the BCL2 fam-
ily that blocks apoptosis and promotes cell proliferation 
[154, 155]. Bcl-w enhances tumor progression by target-
ing pro-apoptotic factors such as Bax and Bak [156, 157]. 
Bcl-w deregulation is significantly associated with vari-
ous types of cancers [158–160]. MiR-107 down regula-
tion was associated with paclitaxel resistance in NSCLC. 
MiR-107 reduced the levels of p-Akt and p-GSK3β, which 
were restored by Bcl-w. MiR-107/Bcl-w axis regulated 
paclitaxel resistance via the PI3K-Akt pathway. MiR-107 
increased paclitaxel sensitivity by regulation of Bcl-w 
expression and PI3K/Akt pathway in NSCLC cells [161]. 
MiR-30a-5p increased the sensitivity of NSCLC cells to 
paclitaxel by suppressing BCL-2 and promoting apopto-
sis. There was a correlation between the miR-30a-5p up 
regulation and a positive response to paclitaxel treatment 
in NSCLC patients [162].

MiRNAs are involved in DOX/TXL response of lung 
tumor cells via the regulation of DNA repair factors 
(Fig.  2). PARP1 has a key role in DNA repair and gene 
transcription [163, 164]. DNA damage activates PARP1, 
which polymerizes ADP-ribose units to recruit the DNA 
repair proteins in DNA damage location [165]. Homol-
ogous recombination (HR) is essential to preserve the 
genomic stability and chemotherapy response that can 
be regulated by PARP1 [166]. It has been shown that 
SCLC cells utilized the miR-7-5p-mediated HR repair 
by PARP1 targeting to increase the doxorubicin resist-
ance. MiR-7-5p down regulated the BRCA1 and Rad51 
in DOX-resistant SCLC cells via PARP1 targeting [167]. 

Checkpoint kinase 1 (CHK1) is a ser/thr kinase that 
is involved in regulation of DNA damage and cell cycle 
response [168]. It promotes cell cycle arrest, DNA repair, 
and apoptosis. MiR-195 sensitized NSCLC cells to pacli-
taxel and targeted CHEK1 to modulate the effective-
ness of MTAs [169]. Circ_0011292 was up regulated in 
PTX-resistant NSCLC cells. Depletion of circ_0011292 
increased the sensitivity to PTX, suppressed cell growth, 
aggressiveness, and migration, while induced apoptosis 
in PTX-resistant NSCLC cells. Circ_0011292 was also 
contributed to PTX resistance via targeting the miR-
433-3p/CHEK1 axis [170].

Autophagy and drug efflux
Multidrug resistance (MDR) is the ability of tumor cell 
to resist against the chemotherapy drugs [171]. MDR is 
acquired through several mechanisms, such as up regula-
tion of ABC transports, inhibition of apoptosis, hypoxia, 
autophagy, DNA repair, miRNA regulation, and epige-
netic changes [172]. Autophagy is a defensive mechanism 
in tumor cells toward the chemotherapeutic treatment. 
Chemotherapy mediated autophagy supports the tumor 
cell metabolism through the recycling of damaged orga-
nelles and proteins to prevent DNA damage [173, 174]. 
Autophagy breaks down damaged cellular components 
using a lysosomal degradation pathway [175, 176]. This 
process improves the tumor cell resistance toward apop-
tosis, hypoxia, and other stress responses, which is essen-
tial for MDR [177, 178]. MiRNAs are involved in DOX/
TXL response of lung tumor cells via the regulation of 
autophagy (Fig. 1). Beclin1 is one of the components of 
autophagy process that facilitates the autophagosomal 
membrane formation [179]. MiR-17-5p was down regu-
lated in paclitaxel-resistant lung cancer cells, and its up 
regulation enhanced the paclitaxel response. Inhibition 
of miR-17-5p ameliorated Beclin1 levels and autophagy, 
which protected cells against paclitaxel-induced apop-
tosis. MiR-17-5p-mediated autophagy and paclitaxel 
treatment also triggered ROS and induced apoptosis in 
A549-T24 cells [180]. Autophagy-related (ATG) pro-
teins as the main components of the autophagy pro-
cess are involved in regulation of the autophagy 
initiation, autophagosomal maturation, lysosomal 
fusion, and autophagolyosomal degradation [181]. There 
was LINC01296 up regulation in NSCLC samples. 
LINC01296 promoted the NSCLC progression and pacli-
taxel resistance through miR-143-3p/ATG2B axis [182]. 
MiR-199a-5p inhibited autophagy in MDR lung tumor 
cells by activating the PI3K/Akt/mTOR axis, eEF2K 
expression, and decreasing ATG5 expression. There was 
miR-199a-5p up regulation in PTX resistant lung tumor 
cells [183]. Tumor cells can develop chemo resistance by 
decreasing drug absorption and facilitating drug efflux 
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[184]. MRP1, MDR1, and BCRP belong to the ABC pro-
tein family involved in drug efflux [185]. GST-π reduces 
drug toxicity by binding to the hydrophobic and electro-
philic compounds via glutathione reduction that result in 
chemo resistance [186–188]. Inhibition of miR-155 down 
regulated the MRP1, MDR1, GST-π, and BCRP in A549/
Dox cells. MiR-155 repressing also down regulated Bcl-2 
and Survivin, while up regulated CASP8 and CASP3 that 
enhanced apoptosis in lung tumor cells. MiR-155 inhi-
bition also reduced AKT and ERK phosphorylation to 
inhibit PI3K/AKT and MAPK signaling pathways that 
reversed DOX resistance in lung tumor cells [189].

Conclusions
Doxorubicin and Paclitaxel are widely used as the first 
line chemotherapeutic drugs in lung cancer patients. 
However, a significant percentage of patients show resist-
ance to these drugs. Therefore, considering the DOX/
TXL side effects in normal body tissues, it is required to 
introduce the novel prognostic markers to predict the 
Doxorubicin and Paclitaxel responses in lung cancer. 
The present review is an effective step towards intro-
ducing miRNAs as the non-invasive markers to predict 
DOX/TXL response in lung cancer which improves the 
therapeutic strategies to prolong the survival rates in 
these patients. However, the introduction of miRNAs 
as the non-invasive prognostic markers in lung cancer 
patients requires more clinical studies. In this context, 
it is required to assess the circulating levels of miRNAs 
in body fluids to clinically use them as the non-inva-
sive markers in screening programs among lung cancer 
patients and healthy people with a positive familial his-
tory. Considering that the miRNAs mainly promote the 
sensitivity of lung tumor cells to Paclitaxel and Doxoru-
bicin, microRNA mimics strategies can have the promis-
ing therapeutic effects in these patients. However, more 
animal studies and clinical trials are needed to be able to 
clinically use the microRNA mimics to treat the DOX/
TXL-resistant lung cancer patients.
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