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Cilostazol protects against degenerative 
cervical myelopathy injury and cell pyroptosis 
via TXNIP-NLRP3 pathway
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Abstract 

Degenerative cervical myelopathy (DCM) is one of the most common and serious neurological diseases. Cilostazol 
has protective effects of anterior horn motor neurons and prevented the cell apoptosis. However, there was no lit-
eratures of Cilostazol on DCM. In this study, we established the DCM rat model to detect the effects of Cilostazol. 
Meanwhile, the neurobehavioral assessments, histopathology changes, inflammatory cytokines, Thioredoxin-inter-
acting protein (TXNIP), NOD-like receptor pyrin domain containing 3 (NLRP3) and pro-caspase-1 expressions were 
detected by Basso, Beattie, and Bresnahan score assessment, Hematoxylin and Eosin Staining, Enzyme-linked immu-
nosorbent assay, immunofluorescence and Western blotting, respectively. After treated with Cilostazol, the Basso, 
Beattie, and Bresnahan (BBB) score, inclined plane test and forelimb grip strength in DCM rats were significantly 
increased meanwhile the histopathology injury and inflammatory cytokines were decreased. Additionally, TXNIP, 
NLRP3 and pro-caspase-1 expressions levels were decreased in Cilostazol treated DCM rats. Interestingly, the using 
of siTXNIP significantly changed inflammatory cytokines, TXNIP, NLRP3 and pro-caspase-1 expressions, however there 
was no significance between siTXNIP and Cilostazol + siTXNIP group. These observations showed that Cilostazol res-
cues DCM injury and ameliorates neuronal destruction mediated by TXNIP/NLRP3/caspase-1 and pro-inflammatory 
cytokines. As a result of our study, these findings provide further evidence that Cilostazol may represent promising 
therapeutic candidates for DCM.
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Introduction
Degenerative cervical myelopathy (DCM), formerly 
known as cervical spondylotic myelopathy, is one of the 
most common and serious neurological disease caused 
by spinal cord compression induced degenerative 

vertebral column abnormalities with various symptoms 
including spinal cord injury, numbness of extremities 
and gait disturbance [1, 2]. Patients with DCM suffered 
with neck and shoulder pain, limited range of move-
ment and upper motor neuron damage [3, 4]. With the 
development progress of modern clinical technology, 
the therapy for DCM including conservative treatment 
and surgically decompressing. Studies have shown that 
decompression surgery could prevent the development 
of DCM but with poor prognosis [5]. Moreover, studies 
have shown that spinal cord microvasculature disrup-
tion, inflammation and activation of apoptotic signaling 
pathways are involved in secondary spinal cord injury 
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in DCM [6, 7]. Therefore, it is vital to investigate the 
potential mechanism and useful treatment of DCM.

As shown in various studies, the central nervous sys-
tem caused inflammation was lasted in the progression 
of DCM [8]. Pyroptosis is a recently discovered mode 
of cell death in multiple tissues caused by inflamma-
tion, whether acute or chronic [9–11]. Pro-inflam-
matory programmed cell death is often mediated by 
inflammasomes, which release inflammatory mediators 
such as IL-1β and IL-18 [10, 12]. As a result, excessive 
inflammatory responses are triggered. As a result of 
activation of the NOD-like receptor pyrin domain con-
taining 3 (NLRP3) inflammasome, procaspase-1 is con-
verted into cleaved caspase-1 meanwhile pro-IL-1β is 
converted into IL-1β mechanically [13]. It has been dis-
covered that NLRP3-related pyroptosis plays a key role 
in DCM diseases, particularly in those involving tissue 
damage and inflammation [14, 15]. Furthermore, oxi-
dative stress induces the activation of inflammasomes. 
In Central nervous system (CNS) pathologies, includ-
ing post-ischemic pain, the NLRP3 signaling cascade is 
thought to play an important role in regulating neuro-
inflammatory responses.

It has been demonstrated that in addition to swelling, 
membrane lysis, chromatin fragmentation, and intracel-
lular pro-inflammatory factors, pyroptosis is implicated 
in cell swelling. Multiple neurological disorders and spi-
nal cord injuries are associated with pyroptosis-regulated 
cell death, according to current research [16]. Thiore-
doxin-interacting protein (TXNIP), plays an important 
role in activating NLRP3 inflammasomes, regulates 
oxidative stress, cell proliferation, differentiation, and 
apoptosis [17]. TXNIP/NLRP3 inflammasome play a key 
role in the pathogenesis of inflammation diseases and 
maintains redox balance in cells. Previous studies have 
shown that TXNIP exacerbates oxidative stress as well as 
increases inflammation in an NLRP3-dependent manner 
[18, 19].

Cilostazol, a potent inhibitor of phosphodiesterase III 
(PDE3), has been worldwide used for the treatment of 
lower extremity peripheral arterial disease and recur-
rent ischemic stroke [20, 21]. In addition, Cilostazol has 
shown to have protective properties in ischemia-reper-
fusion injury, hepatic steatosis and even neuroprotec-
tive properties in chronic compression of the cervical 
spinal cord and neuronal degeneration [22–24]. It has 
been reported that neuroprotective effects of Cilosta-
zol were mediated by the anti-inflammatory, anti-oxi-
dant and anti-apoptotic functions. Recent studies have 
revealed that Cilostazol could ameliorated spinal cord 
ischemia-reperfusion injury in rabbits [25]. Addition-
ally, Cilostazol has protective effects of anterior horn 
motor neurons and prevented the cell apoptosis [24, 

26]. Taken together, Cilostazol was neuroprotective in 
the DCM and was potentially useful in the treatment of 
DCM.

Currently, the neuroprotective effects of Cilostazol 
have been demonstrated in several disease conditions 
ravaging the central nervous system [27, 28]. In murine 
cerebral cortex following transient ischemia, Cilostazol 
ameliorates NLRP3-induced allodynia and hyperalge-
sia. The central post-ischemic pain problem is caused 
by the NLRP3, ASC, caspase-1, and IL-1β inflamma-
some, Cilostazol functions to inhibit these inflammas-
omes [29].

Based on the aforementioned literature, in the present 
study, we aimed to explored the effects of Cilostazol on 
DCM rat model. Furthermore, we investigated the effects 
of Cilostazol on inflammatory cytokines and TXNIP/
NLRP3 relative proteins. This study aimed to provide a 
scientific reference for the research of the mechanism 
of Cilostazol and identify a novel therapeutic target for 
DCM.

Results
Cilostazol promoted neurobehavioral behavior recovery 
in DCM rats
The cervical spinal cord of DCM rats was compressed 
after surgery. Cervical spinal cord compression caused 
hindlimb paralysis in DCM group, the locomotion of 
the 15  mg/kg and 30  mg/kg Cilostazol group gradually 
improved compared to the DCM group. According to 
Fig.  1, BBB score, inclined plane test, and forelimb grip 
strength deteriorated in DCM group, however the scores 
were higher in 15 mg/kg and 30 mg/kg Cilostazol groups 
(p < 0.05).

Cilostazol reversed histopathology injury 
and inflammatory cytokines in DCM rats
According to Fig.  2, HE staining revealed structural 
and neuronal damage, pyknosis of neuronal nuclei, and 
interstitial edema in the DCM group rat. Interestingly, 
Cilostazol reversed the tissue damage and inflammatory 
signs caused by DCM at doses of 15 and 30 mg/kg.

Contrast with the histopathology results, as shown in 
Fig.  2, according to the ELISA results, compared with 
the Sham group, inflammatory cytokines (IL-1β and 
IL-18) levels were significantly higher in the DCM group 
(576.82 ± 11.22 ng/mL, 599.53 ± 12.02 ng/mL). Mean-
while, the levels of IL-1β and IL-18 were significantly 
lower in the 15 and 30  mg/kg Cilostazol groups com-
pared with the DCM group (p < 0.05). Meanwhile, 30 mg/
kg Cilostazol showed lower levels of IL-1β and IL-18 than 
15 mg/kg Cilostazol (p < 0.05).
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Cilostazol attuned GAP‑43 and Iba‑1 expressions in DCM 
rats
Growth-associated protein (GAP-43), a growth-related 
factor, is thought to play a role in differentiation and 
maturation of nerve cells. In the CNS, GAP-43 is highly 
expressed during axonal growth. According to the results 
of the present study, the DCM procedure reduced spinal 
levels of GAP-43 by a significant amount, confirming the 
impairments caused by DCM. It is interesting to note 
that compared to the DCM group (15.80 ± 1.42), Cilosta-
zol administration significantly increased spinal lev-
els of GAP-43 to a greater degree (15 mg/kg Cilostazol: 
37.56 ± 2.83; 30 mg/kg Cilostazol: 41.54 ± 1.03), exhibiting 
the potential for improving the condition.

Iba-1 antibody (microglia marker) was used to exam-
ine the effects of Cilostazol on inflammatory responses in 
spinal cord tissue. In the DCM group, Within the injury 
epicenter and adjacent areas, Iba-1 levels increased sig-
nificantly (43.72 ± 1.87). According to Fig.  3, Cilostazol 
treatment significantly reduced microglial activation. 

According to the data, Cilostazol may reduce the initial 
activation of Iba-1 positive immune cells, thereby con-
tributing to tissue repair. Meanwhile, 30  mg/kg Cilosta-
zol showed lower levels of Iba-1 than 15 mg/kg Cilostazol 
(p < 0.05).

Cilostazol attuned TXNIP, NLRP3 and cleaved caspase‑1 
expressions in DCM rats
In order to detect TXNIP, NLRP3 and cleaved Caspase-1 
expressions in DCM rats, immunofluorescence analysis 
and western blot assay were performed.

As shown in Figs.  4 and 5A, after DCM treatment, 
TXNIP, NLRP3, and cleaved Caspase-1 expressions were 
significantly increased.

Consistent with immunofluorescence study, as 
shown in Fig.  5, after DCM treatment, TXNIP, NLRP3, 
and cleaved Caspase-1 expressions were significantly 
increased. Compared with the DCM group, 15  mg/kg 
Cilostazol and 30  mg/kg Cilostazol could significantly 
decrease TXNIP, NLRP3, and cleaved Caspase-1 levels 

Fig. 1 Cilostazol improves the motor function recovery in DCM model rats. A BBB scores; B Angle degree; C, D Forelimb grip strength; *p < 0.05 vs. 
Sham group. #p < 0.05 vs. DCM group
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(p < 0.05). Meanwhile, 30 mg/kg Cilostazol showed lower 
levels of TXNIP, NLRP3, and cleaved Caspase-1 than 
15  mg/kg Cilostazol (p < 0.05). Hence, we determined 
that Cilostazol decreases damage in DCM injury and 
shows a protective effect by reducing the TXNIP-NLRP3 
interaction.

Cilostazol attuned IL‑1β/NeuN, cleaved‑caspase‑1/NeuN, 
NLRP3/NeuN and TXNIP/NeuN expressions in DCM rats
To confirm that Cilostazol could protect against DCM 
injury in a TXNIP-depenent way We silenced TXNIP by 
using siRNA. 30  mg/kg Cilostazol was used for the fol-
lowing experiments.

Immunofluorescence was used to determine the fluo-
rescence intensities of IL-1β/NeuN, cleaved-caspase-1/
NeuN, NLRP3/NeuN, and TXNIP/NeuN in the anterior 
horn of the lesioned area (Figs.  6 and 7). Additionally, 
Western blotting was used to analyze IL-1β, cleaved-Cas-
pase-1 and NLRP3 in the lesioned spinal cords.

The immunofluorescence results showed that cleaved-
Caspase-1, NLRP3, TXNIP and IL-1β were expressed 

in neurons. Meanwhile, the mean gray values of IL-1β, 
IL-18, cleaved-Caspase-1, NLRP3 and TXNIP were 
increased in the DCM group. Cilostazol administration 
significantly decreased spinal levels of IL-1β, cleaved-
Caspase-1, NLRP3 and TXNIP to a greater degree, 
exhibiting the potential for improving the condition. It is 
interesting to note that when treated with siTXNIP, the 
levels of IL-1β, IL-18, cleaved-Caspase-1, NLRP3 and 
TXNIP were decreased. However, in the groups in which 
TXNIP was silenced, Cilostazol treatment (Cilosta-
zol + siTXNIP group) showed no difference compared to 
siTXNIP group. The findings demonstrated that the pro-
tective effect of Cilostazol was reversed upon knockdown 
of TXNIP. Moreover, the protective effects of Cilosta-
zol were observed to be dependent on the presence of 
TXNIP.

Using western blotting, we detected IL-1β, IL-18, 
cleaved-Caspase-1 and NLRP3 expressions. According 
to Fig.  8, compared with the DCM group, Cilostazol 
administration significantly decreased spinal levels of 
IL-1β (1.35 ± 0.17), cleaved-Caspase-1 (1.91 ± 0.25) and 

Fig. 2 Spinal cord histopathology and level of inflammatory cytokines in DCM model rats. A Hematoxylin and eosin staining (Scar bar: 40×: 500 μm; 
400×: 50 μm); B IL-1β; C: IL-18. *p < 0.05 vs. Sham group; #p < 0.05 vs. DCM group; &p < 0.05 vs. Cilostazol (15 mg/kg) group
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NLRP3 (2.77 ± 0.21), the western blot results were con-
sistent with the immunohistochemistry.

In the groups in which TXNIP was silenced, Cilosta-
zol treatment showed no difference compared to 
siTXNIP group. This observation indicates that knock-
down of TXNIP counteracts the beneficial impact of 
Cilostazol. In conclusion, we confirmed that Cilostazol 
protects against DCM injury by reducing inflamma-
tion and pyroptosis in a TXNIP-depenent manner via 
downregulating the TXNIP-NLRP3 pathway.

Discussion
DCM is a challenging spinal disease caused by compres-
sion and affects the normal life of patients [30]. To detect 
the effects of Cilostazol, we developed a DCM rat model. 
In DCM rats, Cilostazol promoted neurobehavioral 
behavior recovery while reversing histopathology injury 
and inflammation. Cilostazol significantly increased 
spinal levels of GAP-43 to a greater degree and reduce 
the initial activation of Iba-1 positive immune cells, 
exhibiting the potential for improving the condition. 

Fig. 3 Effects of Cilostazol on GAP-43 and Iba-1 expressions in DCM rats were detected by immunohistochemistry (Scar bar: 20 μm). A GAP-43 
expressions; B Iba-1 expressions. *p < 0.05 vs. Sham group; #p < 0.05 vs. DCM group; &p < 0.05 vs. Cilostazol (15 mg/kg) group
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Meanwhile, Cilostazol could significantly decrease 
TXNIP, NLRP3, and cleaved Caspase-1 levels. To explore 
the mechanisms, a plasmid transfection of TXNIP was 
used. As shown in the results, Cilostazol could attuned 
the IL-1β, IL-18, cleaved-Caspase-1 and NLRP3 expres-
sions through inhibiting the expressions of TXNIP.

Previous reports showed that pretreatment with 
Cilostazol significantly attenuated ischemia-reperfusion 
induced neuronal histopathologic injury meanwhile 
ameliorated the neurologic deficits by attenuating oxida-
tive stress in rabbit and rat model [31, 32]. What’s more, 

administration of Cilostazol at a clinical dose could pre-
vent the development of symptomatic myelopathy mean-
while attenuated neuronal loss and deterioration [33, 34]. 
All these results revealed the potential effects of Cilosta-
zol on chronic cord compression. Consistent with the 
previous studies, our research revealed that Cilostazol 
could promote the neurobehavioral behavior recovery 
and attenuated histopathology injury in DCM rat model.

After DCM injury, the spinal cord got injured and the 
injury triggers a complex series of cell apoptosis and 
inflammation [35]. Many investigations showed that 

Fig. 4 Effects of Cilostazol on TXNIP and NLRP3 expressions in DCM rats were detected by immunohistochemistry (Scar bar: 20 μm). A TXNIP 
expressions; B NLRP3 expressions. *p < 0.05 vs. Sham group; #p < 0.05 vs. DCM group; &p < 0.05 vs. Cilostazol (15 mg/kg) group
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Fig. 5 Effects of Cilostazol on cleaved-Caspase-1, TXNIP and NLRP3 expressions in DCM rats (Scar bar: 20 μm). A TXNIP expression was detected 
by immunohistochemistry; B Western blot images; C cleaved-Caspase-1 expressions; D TXNIP expressions; E NLRP3 expressions. *p < 0.05 vs. Sham 
group; #p < 0.05 vs. DCM group; &p < 0.05 vs. Cilostazol (15 mg/kg) group
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Fig. 6 Effects of Cilostazol on IL-1β/NeuN and cleaved-Caspase-1/NeuN expressions in DCM rats were detected by immunohistochemistry (Scar 
bar: 20 μm). A IL-1β/NeuN expressions; B cleaved-Caspase-1/NeuN expressions. *p < 0.05 vs. Sham group; #p < 0.05 vs. DCM group; &p < 0.05 vs. 
Cilostazol (15 mg/kg) group
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Fig. 7 Effects of Cilostazol on NLRP3/NeuN and TXNIP/NeuN expressions in DCM rats were detected by immunohistochemistry (Scar bar: 20 μm). 
A NLRP3/NeuN expressions; B TXNIP/NeuN expressions. *p < 0.05 vs. Sham group; #p < 0.05 vs. DCM group
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neuronal pyroptosis play key roles in the spinal cord 
injury induced inflammatory and recovery of the tissue 
integrity [36].

Pyroptosis was recently identified inflammatory cell 
death mediated by the inflammasome and dependent on 
caspase-1 [37]. In response to microbial infection and 
cellular damage, inflammasomes form in the cytosol. 
Inflammasome-mediated neuroinflammation in micro-
glia is mediated by NLRP3, formed by five PRRs (NLRP1, 
NLRP3, NLRC4, Pyrin, and AIM2) [38, 39]. By assem-
bling an inflammasome, procaspase-1 is proteolytically 
cleaved into active caspase, IL-1β and IL-18 are con-
verted from their precursors into mature and biologically 
active products. There are many immune reactions that 
are mediated by mature IL-1β [40]. Pyroptosis, a form of 
proinflammatory cell death, is also induced by IL-1β or 
active caspases [41]. As soon as pyroptosis is activated, 
caspase-1 processes the precursor of the inflammatory 
cytokines IL-1β and IL-18 [42]. In this study, we found 
that after DCM, the spinal cord displayed characteristic 
features of pyroptosis, as evidenced by increased levels of 
cleaved- caspase-1, IL-1β, IL-18 and NLRP3. As a result 
of Cilostazol treatment, DCM-induced cell pyroptosis 
was decreased, suggesting that Cilostazol is a cellular 
mechanism that inhibits pyroptosis.

As an endogenous negative modulator of thioredoxin, 
TXNIP plays a crucial role in maintaining redox balance 
in cells [12, 43]. In addition to exacerbating oxidative 
stress, TXNIP also induces an inflammatory response in 
an NLRP3-dependent manner, which is also called the 

TXNIP-NLRP3 axis [17]. It was reported that Cilosta-
zol significantly reduced NLRP3 inflammasome activa-
tion, as well as other harmful factors including TXNIP, 
IL-1β and IL-18 in human vascular endothelial cells [44]. 
In the current study, we found that TXNIP-NLRP3 axis 
was found to be involved in Cilostazol’s protective effect. 
Furthermore, we discovered that the TXNIP-NLRP3 
axis caused DCM-induced pyroptosis, which could be 
the cause of excessive inflammatory injury. Interestingly, 
when we set the siTXNIP group, there was no signifi-
cance between siTXNIP and Cilostazol + siTXNIP group. 
The results revealed that knockdown of TXNIP reversed 
the protective effect of Cilostazol.

Conclusion
In this research, we investigated that under the condition 
of DCM, the markers of pyroptosis were activated and 
the expression of inflammation factors were increased. 
Meanwhile, the treatment with Cilostazol significantly 
decreased the marker levels of inflammasome meanwhile 
decreased the levels of TXNIP. Interestingly, the using 
of siTXNIP significantly changes levels of cleaved- cas-
pase-1, IL-1β, IL-18 and NLRP3, however there was no 
significance between siTXNIP and Cilostazol + siTXNIP 
group. These observations showed that Cilostazol could 
alleviated the DCM injury via regulating TXNIP-NLRP3 
pathway. Cilostazol may provide a novel treatment for 
DCM, thus providing a theoretical basis for future aca-
demic and clinical research.

Fig. 8 Effects of Cilostazol on IL-1β, IL-18, cleaved-Caspase-1 and NLRP3 expressions were detected by Western blot. A Western blot images; B IL-1β 
expressions; C cleaved-Caspase-1 expressions; D NLRP3 expressions. *p < 0.05 vs. Sham group; #p < 0.05 vs. DCM group
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Materials and methods
Chronic cervical cord compression model
The animal experiments were carried out in compliance 
with the ARRIVE guidelines (Animal Research: Report-
ing of In  Vivo Experiments). We obtained approval of 
the Animal Ethics Committee of Yantai hospital of tra-
ditional Chinese medicine for the procedures we used 
in this study. The study was carried out according to the 
principles of Guide for the Care and Use of Laboratory 
Animals published by the National Institutes of Health 
(NIH Publications No. 8023). We used 90 Sprague-
Dawley (SD) rats (weighing 250–300 g) with a 12-hour 
light/dark cycle standard condition. The sample size 
was determined according to the previous study [45].

Pentobarbital (40  mg/kg) was used to anesthetize 
the rats and induce chronic compression in the cervi-
cal cord. A posterior approach was used to expose the 
spinal process and laminae of C4–C6, followed by the 
ligamentum flavum and C5 lamina were removed to the 
epidural space. In order to implant the same polyvinyl 
alcohol-polyacrylamide hydrogel at the C6 level on the 
left side of the spinal canal, the rats underwent a care-
ful procedure. After expansion of the hydrogel, the spi-
nal cord gradually compressed (about 4 weeks). Sham 
group rats underwent sham surgery (only received liga-
mentum flavum and C5 lamina removed to the epidural 
space without sublaminar placement) [46].

 To evaluate the establishment of DCM model rats, 
the rats were assessed by Behaviors test and all the rats 
were selected according to the DCM priori inclusion/
exclusion criteria [47]. Then, the DCM model rats were 
randomly divided into three groups (n = 10). In this 
study, there were four groups (n = 10): Sham group, 
DCM model group (DCM), 15 mg/kg Cilostazol group 
for DCM models treated with 15 mg/kg/day, 30 mg/kg 
Cilostazol group for DCM models treated with 30 mg/
kg/day. Cilostazol was orally administered to the rats 
once a day. The drug was administered for 5 weeks. 
Investigators were blinded to group allocation during 
the experiment and analysis.

Neurobehavioral assessments
Basso, beattie, and bresnahan (BBB) score
An assessment of motor function based on a 21-point 
scoring system was used to assess the locomotor recov-
ery after DCM [48]. Animals on an open field were 
observed to move hindlimb joints, place paws during 
stepping, support weight, and coordinate forelimbs and 
hindlimbs independently by two examiners blinded to 
the experimental conditions.

Inclined plane test
On an inclined plane ranging from 0° to 90°, rats are 
tested on their maximum slope of stability [49].

Forelimb grip strength assessment
The grip strength of rats was assessed using forelimb 
grip strength assessment. In the present study, experi-
menters were blinded to the treatment conditions dur-
ing all behavioral studies [49].

Hematoxylin and eosin staining
Following behaviors evaluation, rats were euthanized 
with pentobarbital (40  mg/kg) intraperitoneally. A 4% 
paraformaldehyde solution was applied to the spinal 
cords for 12 h at 4 ℃. According to the previous study, 
the experimental procedure was performed. A magni-
fication of 40× and 400× was used to observe the sec-
tions under microscopic (Olympus, Tokyo, Japan).

Immunofluorescence analysis
In accordance with the manufacturer’s instructions, 
the expression of GAP-43, Iba-1, TXNIP, cleaved-Cas-
pase-1 and NLRP3 expressions in four to six lumbar 
cord segments (L4-L6) were detected by immunofluo-
rescence. Then, the samples were blocked with 1% BSA 
and 0.1% Triton X-100 for 60  min, GAP-43, Iba-1, 
TXNIP, cleaved-Caspase-1 and NLRP3 (1:500, Cell 
signaling, Beverly, MA, USA) antibodies were added. 
Secondary antibodies IgG (H + L) FITC (1:1000, 
11–4011-85, ThermoFisher) were added and incubated 
in the dark for 2 h. The images were taken and quanti-
fied with the A Zeiss LSM 800 confocal laser scanning 
microscope at a magnification of 20×.

Enzyme‑linked immunosorbent assay (ELISA)
At the end of the experiment, cerebrospinal fluid (CSF) 
was collected from the rats. 

We measured the concentrations of interleukin 
(IL)-1β and IL-18 in rat serum using ELISA kits. The 
experiment was conducted according to the manufac-
turer’s instructions.

Western blotting
Based on previous studies, western blot protocols were 
followed [50]. In brief, using RIPA Lysis Buffer, total 
protein lysates of spinal cord tissues were prepared. 
BCA protein concentration kit was used to measure 
the protein concentration. Electrophoresis on 10% SDS 
gel resolved equal amounts of protein, which was then 
transferred to nitrocellulose. After blocking in 5% non-
fat milk, Membranes were probed overnight at 4 ℃ 
with specific anti- SOCS1, TXNIP, Cleaved-Caspase-1 
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and NLRP3 (1:500, Cell signaling, Beverly, MA, USA). 
Membranes were then incubated with horseradish per-
oxidase-conjugated secondary antibodies for 60 min. A 
chemiluminescence detection system was then used to 
detect antibody binding.

Statistical analysis
IBM SPSS Statistics Version 19.0 (SPSS I nc., Chicago, IL, 
USA) was used for all experimental data analysis. At least 
three sets of data were collected from each experiment 
and are expressed as means ± standard deviation. One-
way analysis of variance (ANOVA) and Tukey’s post-test 
were used to analyze the significant differences between 
the two sets of data. Statistical significance was deter-
mined by p < 0.05.
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