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misfolded proteins, and other unwanted cellular debris 
and the lysosomes fuse with the degraded material envel-
oped by the endoplasmic reticulum (ER) to destroy it 
[1, 2];  microautophagy is characterized by the direct 
engulfment of cytoplasmic material by lysosomes; while 
chaperone-mediated autophagy targets specific soluble 
proteins by binding them to molecular chaperones and 
translocating them to lysosomes for degradation [3, 4].

Autophagy is a double-edged sword [5–7]. Under 
normal conditions, autophagy has an important role in 
maintaining intracellular homeostasis by synthesizing, 
degrading, and recycling cellular products. Conversely, 
under special conditions such as external stress, starva-
tion, hypoxia, and ER stress, cells activate autophagy to 
degrade and recycle cellular components to provide the 
necessary cellular building blocks and energy to maintain 
cellular functions and promote survival [8]. However, 
excessive autophagy can lead to serious consequences 

Introduction
Autophagy is a fundamental cellular process that involves 
the degradation and recycling of unnecessary or dys-
functional cellular components.There are three processes 
involved in autophagic degradation: autophagic initia-
tion, autophagic membrane elongation, and autophagic 
lysosomation. Autophagy can be classified into macro-
autophagy, microautophagy, and chaperone-mediated 
autophagy based on the cellular material translocated 
to the lysosomes. In macroautophagy , this self-cleaning 
mechanism allows cells to remove damaged organelles, 
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Abstract
The silencing regulatory factor 2-like protein 3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent 
deacetylase located primarily in the mitochondria. This protein plays an important role in oxidative stress, energy 
metabolism, and autophagy in multicellular organisms. Autophagy (macroautophagy) is primarily a cytoprotective 
mechanism necessary for intracellular homeostasis and the synthesis, degradation, and recycling of cellular 
products. Autophagy can influence the progression of several neural, cardiac, hepatic, and renal diseases and can 
also contribute to the development of fibrosis, diabetes, and many types of cancer. Recent studies have shown 
that SIRT3 has an important role in regulating autophagy. Therefore in this study, we aimed to perform a literature 
review to summarize the role of SIRT3 in the regulation of cellular autophagy. The findings of this study could be 
used to identify new drug targets for SIRT3-related diseases.
Methods: A comprehensive literature review of the mechanism involved behind SIRT3 and autophagy-related 
diseases was performed. Relevant literature published in Pubmed and Web of Science up to July 2023 was 
identified using the keywords “silencing regulatory factor 2-like protein 3”, “SIRT3” and “autophagy”.
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such as metabolic stress, degradation of cellular compo-
nents, and even cell death [9].

Sirtuins (SIRT) are a highly conserved family of mam-
malian nicotinamide adenine dinucleotide (NAD+)-
dependent deacetylases and are involved in a variety of 

metabolic processes [10–12]. Among mitochondrial 
sirtuins, SIRT3 displays potent deacetylase activity and 
contains a large Rothman-folded structural domain that 
binds with NAD + and a small structural domain with a 
zinc finger structure [13]. SIRT3 gene is located on chro-
mosome 11 (Chr11p15.5) and is expressed at high levels 
in metabolically active organs such as the brain, kidney, 
liver, heart, and brown adipose tissue [14]. In addition, 
SIRT3 has a wide range of abilities to regulate mitochon-
drial morphology and function [15, 16]. There is abun-
dant evidence that SIRT3 can regulate mitochondrial 
function through energy metabolism, oxidative stress, 
and mitochondrial autophagy [17–19]. Mitophagy is a 
mitochondrial-selective autophagy that degrades dam-
aged mitochondria in cells [20, 21]. Downregulation of 
SIRT3 can also disrupt mitochondrial fission and mito-
chondrial autophagy through the FoxO3a/Parkin path-
way [22]. In addition, SIRT3-dependent mitochondrial 
autophagy can also be mediated by the VDAC1/Parkin 
pathway [23]. Thus, SIRT3 can regulate mitochondrial 
autophagy through multiple pathways and is essential 
for maintaining normal mitochondrial function [24, 25] 
(Fig.  1). Numerous studies have shown that SIRT3 can 
affect the progression of neurological, cardiac, hepatic, 
renal, fibrosis, diabetes, and many cancers. SIRT3 role 
is closely linked to its regulation of autophagy (Table 1). 
In this literature review, we aimed to summarize the role 
and molecular mechanisms of SIRT3 in the regulation 
of autophagy to elucidate more on the pathogenesis of 
SIRT3-related diseases. The findings of this study could 
provide the theoretical foundation for the search for new 

Table 1 Effect of SIRT3 on autophagy in several diseases
The experimental 
subject

Effect of SIRT3 on autophagy factors Ref-
er-
ences

6 weeks SD male 
rats (OA model)

Enhanced expression levels of SIRT3, in-
creased the expression of LC3B, Beclin − 1.

 [26]

A549 cells (DOX) Enhanced expression levels of SIRT3, 
increased the expression of LC3 and 
decreased the expression of p62.

 [27]

10 weeks C57BL/6 
male rats

Knockdown of SIRT3 resulted in decreased 
expression levels of LC3-II and Beclin-1.

 [28]

SD rat (OGD 
model)

Enhanced expression levels of SIRT3, 
increased the expression of LC3-II and 
Beclin-1.

 [29]

SH-SY5Y cells (PD 
model)

Enhanced expression levels of SIRT3 
increased the expression of LC3- II, and 
Beclin − 1.

 [30]

129S1/SvlmJ mice
(cardiac hypertro-
phy model)

Knockdown of SIRT3 expression levels, 
decreased the LC3- II, and Beclin − 1 ex-
pression, and increased p62 expression.

 [31]

SH-SY5Y cells (PD 
model)

Inhibition of SIRT3 expression levels 
increased p62 expression.

 [32]

10 weeks C57BL/6 
mice (IRI model)

Knockdown of SIRT3 resulted in decreased 
expression levels of LC3-II and Beclin-1.

 [33]

HK-2 cells (HG) Enhanced expression of SIRT3, increased 
the expression of LC3- II and Beclin − 1 and 
decreased the expression of p62.

 [34]

OA: Osteoarthritis; DOX: Doxorubicin; OGD: Oxygen glucose deprivation; PD: 
Parkinson’s disease; IRI: Renal ischemia-reperfusion; HG: High glucose

Fig. 1 The mechanisms behind SIRT3-regulated autophagy. SIRT3 deacetylates Foxo1 and Foxo3a to first activate the E3 ligases Pink1 and Parkin, thereby 
initiating the activation of autophagy and mitochondrial autophagy. Subsequently, SIRT3 activates LKB1 and phosphorylates AMPK and PI3K. The phos-
phorylation of AMPK directly inhibits mTOR and the phosphorylation of PI3K promotes AKT phosphorylation thus further inhibiting mTOR. The inhibition 
of mTOR promotes autophagy. In addition, SIRT3 can significantly enhance the SOD2 function by promoting its antioxidant activity and deacetylation of 
its key lysine residues thus eventually leading to a reduction in the cellular ROS levels and the inhibition of autophagy

 



Page 3 of 8Xi et al. Cell Division           (2024) 19:20 

drug targets for the prevention and treatment of SIRT3 
and autophagy-related diseases.

SIRT3 regulates autophagy via the phosphoinositide 
3-kinase / protein kinase B / mammalian target of 
rapamycin pathway (PI3K/AKT/mTOR)
Recent studies on autophagy-related signaling pathways 
have shown that the PI3K/AKT/mTOR signaling pathway 
acts as a key regulator of autophagy and is involved in the 
initiation and promotion of several pathological disor-
ders [35–37]. The PI3K/AKT/mTOR signaling pathway 
regulates cell proliferation, growth, cell size, metabolism, 
and motility [38, 39]. Recent studies have shown that the 
PI3K/AKT/mTOR pathway is one of the key pathways 
involved in the molecular mechanisms of SIRT3-medi-
ated autophagy [35].

Osteoarthritis (OA) is the most common joint dis-
ease, and numerous studies have shown that autophagy 
is closely related to the development and severity of OA 
[40–43]. Among the pathogenic factors of OA, autoph-
agy protects chondrocytes from apoptosis and maintains 
their intracellular homeostasis by denaturing damaged 
proteins and organelles [44, 45]. Upregulation of autoph-
agy has also been linked to improved OA-associated 
cartilage degeneration [42]. Interleukin-1 beta (IL-1β) 
stimulation in rat chondrocytes caused significant deg-
radation of autophagic markers, including Atg5, Atg7, 
Beclin-1, and LC3B, suggesting a blocking effect of IL-1β 
on autophagy. However, SIRT3 overexpression increased 
the mRNA and protein levels of Atg5, Atg7, Beclin-1, and 
LC3B, indicating that SIRT3 overexpression increased 
autophagic flux. The phosphorylation levels of PI3K, 
AKT, and mTOR were suppressed after SIRT3 overex-
pression, while siRNA-mediated SIRT3 knockdown sig-
nificantly enhanced the activation of PI3K, AKT, and 
mTOR induced by IL-1β stimulation. These results sug-
gest that SIRT3 can inhibit IL-1β-induced activation of 
the PI3K/AKT/mTOR signaling pathway in rat chondro-
cytes. In addition, further experiments using PI3K/AKT/
mTOR pathway-specific agonists and inhibitors showed 
that SIRT3 can reverse IL-1β-induced dysregulation of 
autophagy by regulating the PI3K/AKT/mTOR pathway 
[26].

Similar results were obtained by the study of Fan et 
al.(2022) which evaluated the function of SIRT3 during 
doxorubicin (DOX)-induced senescence of A549 cells. 
The phosphorylation levels of PI3K, AKT, and mTOR 
increased following the administration of DOX under 
SIRT3 inhibition. The PI3K inhibitor LY294002 promoted 
the antioxidant stress and anti-aging effects of SIRT3, 
while the AKT activator SC-79 reversed these effects 
of SIRT3. These results indicate that SIRT3 can reverse 
the DOX-induced blockade of autophagy flux and aging 
by inhibiting the PI3K/AKT/mTOR signaling pathway 

[27]. Conversely, an inverse effect may exist between the 
SIRT3 and PI3K/AKT/mTOR signaling pathway [46]. 
SIRT3 knockdown experiments have shown that met-
formin can reverse hydrogen peroxide (H2O2)-induced 
apoptosis in osteoblasts by upregulating SIRT3 expres-
sion via the PI3K/AKT pathway [47].

SIRT3 regulates autophagy via the AMP-activated protein 
kinase (AMPK)/mTOR pathway
Autophagy and mitochondrial homeostasis are regu-
lated by AMPK, and the AMPK pathway has been shown 
to coordinate the induction of autophagy by inhibiting 
mTOR [48, 49]. AMPK is a heterotrimeric complex com-
posed of the catalytic subunit alpha (α), the scaffolding 
protein subunit beta (β), and the non-catalytic regulatory 
subunit gamma (γ) [50]. It is an evolutionarily conserved 
serine/threonine protein kinase that can be activated 
under various physiological and pathological conditions 
by upstream phosphorylation and binding to adenos-
ine monophosphate (AMP) and adenosine diphosphate 
(ADP). Activated AMPK regulates a variety of metabolic 
processes, including autophagy [51]. mTOR is one of the 
downstream targets of AMPK, and activation of AMPK 
can inhibit mTOR signaling [52]. However, mTOR also 
plays a role in inhibiting autophagy, thereby inhibiting 
proteolytic metabolism. mTOR inhibits autophagy by 
directly inhibiting unc-51-like kinase 1 (ULK1), a key fac-
tor in autophagy induction [53], or by indirectly inhib-
iting autophagy by blocking the lysosomal biological 
response via the inhibition of the nuclear translocation 
of transcription factor EB (TFEB) [54–56]. Numerous 
studies are showing that SIRT3 can regulate autophagy 
through the AMPK/mTOR pathway and thus have an 
impact on a variety of pathological changes [57].

SIRT3 can trigger inflammation and oxidative stress 
and was found to be associated with reactive oxygen 
species (ROS) production and neuronal death in the 
hippocampus [58]. SIRT3 activation can lead to the 
development of resistance to postoperative cognitive dys-
function (POCD) through anti-inflammatory and anti-
oxidant mechanisms [59]. POCD can lead to a decrease 
in SIRT3 expression which in turn leads to a decrease in 
LC3 and Beclin-1 levels and an increase in p62 level in 
the hippocampus. The administration of isoproterenol 
treatment upregulated SIRT3, which in turn led to an 
increase in LC3 and Beclin-1 levels and a decrease in p62 
level that are responsible for the inflammatory response 
and oxidative stresses within the hippocampus. In lipo-
polysaccharide (LPS)-stimulated neurons, SIRT3 upregu-
lation enhanced the anti-inflammatory and antioxidative 
stress effects of isoproterenol-activated autophagy via 
phosphorylation of the AMPK/mTOR pathway. The 
increase in the LPS-stimulated neurons during isopro-
terenol treatment suggests that isoproterenol can induce 
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activation of the AMPK/mTOR pathway in inflammatory 
neurons, while SIRT3 upregulation can increase AMPK 
phosphorylation levels and decrease mTOR phosphoryla-
tion levels in inflammatory neurons. These results suggest 
that isoproterenol reverses the LPS-induced changes in 
the expression of autophagy-related proteins (including 
LC3, Beclin-1, and p62) by increasing LC3 and Beclin-1 
levels and decreasing p62 levels. On the other hand, the 
upregulation of SIRT3 enhances the effects of isopro-
terenol. Overall, SIRT3 upregulation enhanced the iso-
proterenol-induced autophagy mediated by the AMPK/
mTOR pathway in LPS-treated neurons [60]. This regula-
tion of SIRT3-dependent autophagy through the AMPK/
mTOR was linked with the prevention of several diseases 
such as kidney injury [28] and neuronal ischemia [29]. 
SIRT3 deficiency can also protect against SH-SY1Y cells 
autophagy by inhibiting the AMPK/mTOR pathway and 
promoting GPX4 levels to resist autophagy-dependent 
ferroptosis [61]. On the other hand, SIRT3 can promote 
autophagy through the LKB5-AMPK-mTOR pathway 
to protect against rotenone-induced injury in SH-SY1Y 
cells [30]. However, the interaction between SIRT3 and 
AMPK is not limited to the regulation of autophagy and 
may affect many other pathways that play an important 
role in the development of diseases [62–65]. Therefore 
further research is required to identify these pathways.

SIRT3 regulates autophagy through the FoxO family
Forkhead transcription factor O (Forkhead box O, FoxO) 
is one of the major cellular transcription factors that 
play a key role in cell metabolism, apoptosis, lifespan, 
cell cycle, and stress response [66–68]. As transcrip-
tional activators of autophagic proteins such as LC3 and 
Beclin-1, FoxO proteins have been linked with autophagy 
[69]. Among them, FoxO1 and FoxO3a can regulate the 
expression of Atg, which is closely related to the activa-
tion of autophagy [24, 70], while SIRT3 can mediate the 
deacetylation of FoxO1 and FoxO3, thereby mediating 
the activation of autophagy [71–73].

The report by Li et al. [31] provides new evidence for 
the intrinsic link between SIRT3-FoxO1-induced autoph-
agy dysfunction and myocardial hypertrophy. Li et al. 
administered angiotensin II (AngII) infusion to wild-type 
and SIRT3 knocked out mice. The immunoblot analysis 
confirmed the absence of SIRT3 protein in the hearts of 
SIRT3 KO mice. In this study, an increase in the SIRT3 
expression in the hypertrophied hearts of WT mice was 
noted after receiving AngII, suggesting that SIRT3 may 
be involved in the prevention of myocardial hypertro-
phy. The expression of LC3-II and Beclin-1 was signifi-
cantly reduced after SIRT3 knockdown. In addition, an 
increase in P62 expression levels was also noted indicat-
ing a decrease in autophagy. These findings indicate that 
SIRT3 may attenuate AngII-induced cardiac hypertrophy 

by promoting the autophagic process. Li et al. treated 
cardiomyocytes with siRNA-FoxO1 and AngII. FoxO1 
silencing blocked the induction of autophagy, suggesting 
an interaction between SIRT3 and FoxO1. Localization of 
FoxO1 by immunofluorescence revealed that SIRT3 was 
able to deacetylate FoxO1. Moreover, when FoxO1 was 
knocked down, the expression of SIRT3 was also largely 
downregulated, thus suggesting the presence of a positive 
feedback effect between SIRT3 and FoxO1. SIRT3 pro-
moted FoxO1 nuclear translocation, and nuclear FoxO1 
acted as a transcription factor that can promote the tran-
scription of SIRT3 gene. Overall these results suggest 
the SIRT3-FoxO1 signaling pathway can improve AngII-
induced myocardial hypertrophy by enhancing autoph-
agy [31]. A similar protective effect of SIRT3-FoxO1 was 
also reported in polycystic ovary syndrome [74].

FoxO3 is an important member of the FoxO family 
that controls autophagy-related genes expression [75]. 
FoxO3 can mediate multiple signaling pathways by acti-
vating multiple genes involved in energy metabolism, 
oxidative stress, proteostasis, apoptosis, cell development 
and differentiation, metabolic processes, autophagy, and 
longevity [76, 77]. However, the SIRT3-mediated FoxO3 
deacetylation pathway is essential for mitochondrial 
homeostasis, including the promotion of mitochondrial 
biogenesis, activation of mitochondrial fission or fusion, 
and induction of mitochondrial autophagy [78]. Zhang et 
al. [32] reported that ε-viniferin can promote mitochon-
drial autophagy by upregulating SIRT3-mediated FoxO3 
deacetylation, thereby ameliorating rotenone-induced 
mitochondrial dysfunction in-vitro. As an important 
marker of autophagy, p62 is significantly degraded during 
autophagy. ε-viniferin treatment led to a decrease in p62 
levels, while knockdown of SIRT3 and FoxO3 reversed 
the decrease in p62 levels caused by ε-viniferin treat-
ment. This indicates that pretreatment with ε-viniferin 
reversed the inhibitory effect of rotenone on SIRT3 and 
FoxO3. Autophagosomes, autophagic regions, and mito-
chondrial elongation were significantly increased in the 
ε-viniferin-treated group compared with the control 
or model group, suggesting that ε-viniferin can reduce 
rotenone-induced mitochondrial dysfunction by pro-
moting mitochondrial autophagy through upregulating 
SIRT3-mediated FoxO3 deacetylation. Recently, Hu et 
al. also reported that Omentin1 can promote the PINK1/
Parkin-dependent mitochondrial autophagy through the 
SIRT3/FoxO3a signaling pathway to maintain dynamic 
mitochondrial homeostasis, thereby reducing myocardial 
ischemia-induced heart failure and enhancing myocar-
dial resistance to long-term ischemic injury [79].
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SIRT3 regulates autophagy through superoxide dismutase 
/ reactive oxygen species (SOD/ROS)
SIRT3 reduces ROS levels in cells that are dependent on 
SOD2, a key mitochondrial antioxidant enzyme [80, 81]. 
SIRT3 can significantly enhance the function of SOD2 by 
promoting its antioxidant activity and the deacetylation 
of key lysine residues on SOD2 to protect cells from 
oxidative stress and reduce cellular ROS levels [82–84]. 
Mitochondrial autophagy is an important mitochondrial 
quality control mechanism that removes damaged mito-
chondria and reduces ROS production [85]. These find-
ings suggest a close relationship between mitochondrial 
oxidative stress, ROS production, and mitochondrial 
autophagy [86].

Mitochondrial autophagy is considered a bona fide 
strategy to limit mitochondrial ROS production by spe-
cifically isolating and phagocytosing aged and damaged 
mitochondria in lysosomes [87]. Mitochondrial autoph-
agy may function more broadly to limit the deleterious 
effects of ROS on cellular function [88]. The mitochon-
drial DNA damage is induced by ROS, decreases mito-
chondrial membrane potential, and induces protein and 
lipid oxidation [89]. Mitochondrial autophagy follow-
ing DNA damage is an important cellular response to 
maintain mitochondrial function and DNA repair. In 
some cases, the mitochondrial autophagy process can 
increase mitochondrial ROS levels, which can trigger the 
cell to further induce mitochondrial autophagy, thereby 
propagating elevated mitochondrial ROS levels through 
a positive feedback loop [90]. Enzymatic and non-enzy-
matic defense systems within the mitochondria elimi-
nate excess ROS to protect cells from oxidative stress 
[91]. Non-enzymatic defense systems include flavonoids, 
vitamins, glutathione, SOD, superoxide reductase (SOR), 
catalase (CAT), glutathione peroxidase (GPX), glutathi-
one disulfide reductase (GSR), peroxiredoxin (PRDX) 
and thioredoxin (TXN) [92].

As the main acetyl-lysine deacetylase within the mito-
chondria, SIRT3 can regulate several proteins involved in 
mitochondrial function and ROS production [93]. SIRT3 
can regulate ROS clearance mainly by altering the acety-
lation of SOD2 [94, 95]. More importantly, SIRT3 directly 
binds and deacetylates SOD2, thereby increasing SOD2 
activity and significantly influencing ROS homeostasis 
and autophagic flux within the mitochondria [82, 96]. As 
a result, increased mitochondrial ROS production is an 
important stimulus for the development of autophagy in 
several diseases. Autophagic degradation and removal 
of damaged oxidized proteins in response to mitochon-
drial oxidative stress have been reported to be beneficial 
for cells [97, 98]. Conversely, severe oxidative stress and 
increased mitochondrial ROS can activate signaling path-
ways that induce autophagic cell death [99], which may 
have some detrimental effects on cells.

Other pathways
Studies have shown that SIRT3 uses its deacetylase activ-
ity to prevent mitochondrial damage during acute kid-
ney injury (AKI). It can also protect the kidney from 
ischemia-reperfusion injury (IRI) by modulating the 
dynamin-related protein 1 (DRP1) pathway to induce 
mitochondrial autophagy [33]. SIRT3 also protects the 
kidney from IRI via SIRT3-glutathione S-transferase 
P1 (GTSP1)/c-Jun amino-terminal kinase (JNK), which 
inhibit autophagy and exacerbate sunitinib-induced car-
diotoxicity [100]. Similarly, overexpression of SIRT3 in 
high glucose-stimulated human renal tubular epithelial 
(HK-2) cells can increase the levels of autophagy regula-
tors. Overexpression of SIRT3 restored the dynamic bal-
ance of autophagosome/autolysosome by targeting the 
MTOR/ULK1 signaling pathway, and the results showed 
that SIRT3 effectively attenuated the cardiotoxicity of 
doxorubicin (DOX), providing the theoretical basis for 
further exploration of disseminated intravascular coagu-
lation (DIC) [101]. In addition, SIRT3 activates autoph-
agy, at least in part, by inhibiting the Notch-1/Hes-1 
pathway. Therefore, SIRT3 may be a viable target for 
the treatment of diabetic nephropathy by inhibiting the 
Notch-1/Hes-1 signaling [34].

Summary
Autophagy is a cellular recycling pathway that is essen-
tial for maintaining cellular integrity and intracellular 
homeostasis. As a result, autophagy plays an important 
role in the development of many diseases. SIRT3 is a 
mitochondrial deacetylase with diverse substrates that 
can be involved in various cell biological processes such 
as catabolism, adenosine triphosphate (ATP) production, 
scavenging of ROS, promotion of angiogenesis, induc-
tion of autophagy and maintenance of metabolic homeo-
stasis. SIRT3 has a complex interaction with autophagy. 
SIRT3 and autophagy jointly influence the development 
of many diseases, for example, SIRT3 can regulate cel-
lular autophagy through the PI3K/AKT/mTOR, SIRT3/
AMPK/mTOR, SIRT3/FoxO1/FoxO3a, and SIRT3/SOD/
ROS signaling pathways. However, more research is 
required to identify additional pathways related to the 
development of SIRT3 and autophagy-mediated diseases. 
and to identify new drug targets for SIRT3-mediated 
autophagy-related diseases.
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