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Abstract

Cullin 4 (Cul4), 2 member of the evolutionally conserved cullin protein family, serves as a scaffold
to assemble multisubunit ubiquitin E3 ligase complexes. Cul4 interacts with the Ring finger-
containing protein ROCI through its C-terminal cullin domain and with substrate recruiting
subunit(s) through its N-terminus. Previous studies have demonstrated that Cul4 E3 ligase
ubiquitylates key regulators in cell cycle control and mediates their degradation through the
proteasomal pathway, thus contributing to genome stability. Recent studies from several groups
have revealed that Cul4 E3 ligase can target histones for ubiquitylation, and importantly,
ubiquitylation of histones may facilitate the cellular response to DNA damage. Therefore, histone
ubiquitylation by Cul4 E3 ligase constitutes a novel mechanism through which Cul4 regulates
chromatin function and maintains genomic integrity. We outline these studies and suggest that
histone ubiquitylation might play important roles in Cul4-regualted chromatin function including

the cellular response to DNA damage and heterochromatin gene silencing.

Background

The cullins are a group of evolutionarily conserved pro-
teins that play important roles in many aspects of cell
biology [1]. Cullin serves as a scaffold to assemble multi-
subunit ubiquitin E3 ligase complexes through its C-ter-
minal interaction with the small Ring finger-containing
protein ROCI1 or its homolog ROC2/APC11 and its N-ter-
minal interaction with a number of substrate adaptor pro-
teins, which recognize and bind specific domains in the
substrate [1-3]. Therefore, by serving as a bridge, Cullin E3
ligases bring the ubiquitin-conjugated E2 enzyme,
through its interaction with the Ring finger domain, to
substrates and mediate the isopeptide bond formation
[4]. For example, Cullin 1 bridges F-box containing pro-
teins to an E2 enzyme through the substrate adaptor pro-
tein SKP1, and Cullin 2- and Cullin 5 bridge SOCS
proteins to E2 enzymes through the Elongin complex

[1,2]. Some cullins, however, do not require substrate
adaptor proteins. Cullin 3, for example, binds its substrate
BTB domain-containing proteins directly [5,6]. Since
there is a large number of F-box, SOCS and BTP-contain-
ing proteins in the genome, cullins can potentially regu-
late a broad range of physiological processes [1-3].

There are seven closely related cullin family proteins in
human cells: Cullin 1, Cullin 2, Cullin 3, Cullin 4A, Cul-
lin 4B, Cullin 5, and Cullin 7 (Figure 1A) [1]. Each Cullin
contains a ~150 amino acid Cullin domain at its carboxy-
terminus, which mediates the interaction with the Ring
finger motif in ROC1, or ROC2, or AOC11 [1]. The gen-
eral structure of the scaffold is maintained in all cullins
except for Cullin 4A (Cul4A), which contains a truncated
N-terminus (Figure 1A) [7]. The truncation, which
impairs its interaction with substrate adaptor subunits, is
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Cullin E3 ligase protein family in human cells. (A). Diagram of human Cullin I, Cullin 2, Cullin 3, Cullin 4A, Cullin 4B, Cullin 5,
and Cullin 7. The cullin domain of these proteins is shown. Numbers represent the amino acid number. (B). The modularity of
Cullin 4A E3 ligase. Cullin 4A interacts with the Ring finger-containing protein ROCI through its C-terminus Cullin domain.
The N-terminus of Cullin 4A recruits substrates through DDBI-interacting proteins to ROCI, which interacts with ubiquitin
conjugating enzymes (Ubc5) and mediates the ubiquitylation reaction.
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compensated by DDBI1, a factor that was originally iden-
tified as a subunit of the DNA damage binding complex
[8,9]. In this case, DDBI1 functions as the subunit for sub-
strate recruitment (Figure 1B) [8]. So far, several Cul4 E3
ligase complexes have been identified [10-12]. These com-
plexes have similar compositions and have been impli-
cated in cell cycle regulation, cell proliferation control,
DNA damage checkpoint response, and etc [12,13].

Discussion

Cullin 4 and genomic integrity

Cul4 E3 ligase has been implicated in the maintenance of
genomic integrity by promoting the ubiquitylation and
subsequent degradation of key regulators in cell cycle reg-
ulation [12,13]. In C. elegans, mutation of Cul4 is associ-
ated with a massive DNA re-replication and cell cycle S-
phase arrest [14]. Mutant cells accumulate high levels of
CDT-1, a factor that is required for DNA replication dur-
ing S-phase but has to be degraded at the end of S-phase
to avoid DNA re-replication before the completion of cell
division. The critical role of Cul4 in regulation of CDT-1
levels was demonstrated by an experiment showing that
removing one genomic copy of cdt-1, which reduces the
levels of CDT-1, suppresses the massive DNA re-replica-
tion in Cul4 mutant cells [14]. Moreover, Cul4 has also
been implicated in governing genomic stability when cells
face the challenge of genotoxic agents. In response to UV-
or y-irradiation, Drosophila S2 cells or HeLa cells degrade
CDT-1 and arrest in cell cycle G1-phase. This G1-phase
checkpoint blocks cell division before the damaged DNA
is repaired and prevents transmission of the damaged
DNA to daughter cells, thus ultimately contributing to
genomic integrity. Knockdown of Cul4 in S2 cells or
CUL4A and CUL4B in HelLa cells reduces the ability of
these cells to degrade CDT-1 after genotoxic stress and
impairs the cell cycle arrest. Therefore, Cul4 E3 ligase
could govern genomic integrity by regulating the levels of
CDT-1 [12]. Moreover, Cul4 E3 ligase has been implicated
in the regulation of cell proliferation by the ubiquityla-
tion and degradation of the oncogene c-jun and other
nuclear factors, indicating a potential link between Cul4
and tumorigenesis [7,11]. Consistently, the CUL4A gene
is amplified or overexpressed in a portion of breast and
liver tumors [15,16].

In addition to checkpoint responses, Cul4 might regulate
the repair of damaged DNA directly. CUL4A was identi-
fied as a component of two similar E3 ligase complexes
that function in general and transcriptional-coupled
nucleotide excision repair (NER) pathway, respectively
[10]. NER is an essential cellular defense mechanism that
is responsible for removing a variety of helix-distorting
DNA damages such as UV-induced CPD and 6-4 PPs [17].
Importantly, UV irradiation causes the dissociation of
inhibitory subunits from the E3 ligase complex and tar-
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gets it to the damaged chromatin [10,18,19]. Two factors,
DDB2 and XPC, which function as damage detectors in
the early step of the NER pathway, were indicated as sub-
strates for the Cul4A E3 ligase [19,20]. It was found that
ubiquitylation of XPC and DDB2 by Cul4A E3 ligase reg-
ulates their binding activities toward the damaged DNA in
opposite directions. Ubiquitylation of DDB2 causes the
release of this factor (possibly the whole Cul4A E3 ligase
complex) from the damaged DNA while ubiquitylation of
XPC facilitates its binding to the damaged DNA [20].
Therefore, ubiquitylation of DDB2 and XPC by Cul4A E3
ligase constitutes a mechanism that handovers the dam-
age signal from DDB2 to XPC, the latter of which initiates
the assembly of downstream NER machinery at the dam-
age foci [20].

Cullin4 and histone ubiquitylation

In eukaryotic cells, the genomic DNA is complexed with
histones to form chromatin, which serves as templates for
transcription, replication, recombination, and repair
[21,22]. Posttranslational modifications of histones at
their N-terminal and C-terminal tails play a pivotal role in
regulating the accessibility of DNA as well as the recruit-
ment of modular proteins [23]. Histone modifications
including phosphorylation, acetylation, and methylation
have been implicated in the cellular response to DNA
damage [24]. Moreover, chromatin remodeling activity
has also been implicated in the damage repair process
[25].

The first link between Cul4 E3 ligase and chromatin came
from studies of the cellular response to UV irradiation.
Prior to UV irradiation, Cul4A E3 ligase was found in the
soluble nuclear extract fraction and its ubiquitin ligase
activity was masked by an association with the subunits of
COP9 signalsome (CSN), which are negative regulators of
the ubiquitin ligase activity. Upon UV irradiation, Cul4A
E3 ligase dissociates from the subunits of CSN and binds
to chromatin tightly. Importantly, core histones including
H3, H4, H2A, and H2B were copurified with Cul4A E3
ligase. This study indicated that Cul4A E3 ligase might tar-
get chromatin directly, although it is not clear whether
histones are its physiological substrates [10].

A direct link between Cul4 E3 ligase and chromatin came
from an unbiased search for activities in cell extracts that
could ubiquitylate histones [26,27]. One activity that
ubiquitylates all core histones turned out to be a Cul4 E3
ligase, the CUL4-DDB-ROC1 complex. Although this
complex has compositions similar to the previously iden-
tified Cul4A E3 ligases [8,10-12], it bears unique features.
First, this complex contains both Cul4A and Cul4B. Sec-
ond, this complex contains both DDB1 and DDB2. Third,
this complex is devoid of subunits of CSN, the negative
regulators for ubiquitin ligase activity. Whether these
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unique features confer CUL4-DDB-ROCI1 to ubiquitylate
nucleosomes or whether the previously reported Cul4A
E3 ligases also have activity toward nucleosomes needs to
be investigated in the future.

To determine the role of CUL4-DDB-ROCI in histone
ubiquitylation in vivo, RNAi-mediated knockdown exper-
iments were carried out. Knockdown of Cul4A or Cul4B
in HelLa cells significantly reduces the levels of H3 and H4
ubiquitylation but has little effects on H2A and H2B ubig-
uitylation, indicating that the CUL4-DDB-ROC1 complex
is a bone fide histone ubiquitin ligase, mainly for histones
H3 and H4. The failure to detect changes in H2A and H2B
ubiquitylation in CUL4 knockdown cells is consistent
with previous reports that H2A and H2B are ubiquitylated
by RNF2 and RNF20/RNF40, respectively [27-30]. It is
also possibly that the high basal levels of H2A and H2B
ubiquitylation prevent the detection CUL4-DDB-ROCI1-
mediated H2A and H2B ubiquitylation. Intriguingly, the
levels of H3 and H4 ubiquitylation are induced by UV
irradiation. The ubiquitylation levels increase quickly
after UV irradiation (detectable at ~10 min), reach peaks
between 1-2 hrs, decrease after 4 hrs and return to the
normal level after 8 hrs. This dynamic change indicates
that histone ubiquitylation by CUL4-DDB-ROC1 may
participate in an early step of the damage repair process.
To test this possibility, the recruitment of the damage rec-
ognition protein XPC to the damaged foci was examined
in control and Cul4A knockdown cells. Immunostaining
revealed that in control cells XPC started to relocate to the
damage foci immediately following UV irradiation (0
min) and completely colocalized with the damage foci 30
min after the irradiation. However, colocalization of XPC
with the damage foci was not observed under the same
conditions in the Cul4A knockdown cells. This indicates
that Cul4A, which is required for H3 and H4 ubiquityla-
tion, plays an important role in the recruitment of repair
proteins to the damage foci. Consistently, Cul4A knock-
down has reduced the ability of cells to repair UV-induced
lesions. Furthermore, histone ubiquitylation by CULA4-
DDB-ROC1 weakens the interaction between histones
and DNA. Based on these results, a model was proposed
for the involvement of CUL4-DDB-ROC1-mediated his-
tone ubiquitylation in the cellular response to UV dam-
age. Upon UV irradiation, CUL4-DDB-ROCI1 is recruited
to the damage foci and ubiquitylates histones around the
lesion, which causes histone eviction from the damaged
nucleosomes and exposes the damaged DNA to repair
proteins [26].

The link between Cul4 E3 ligase and histone ubiquityla-
tion was also reported by Kapetanaki et al [18]. Based on
the observations that Cul4A E3 ligase is recruited to dam-
aged foci upon UV irradiation [18,19], the authors seek to
identify the physiological substrates during this process.

http://www.celldiv.com/content/1/1/14

Ubiquitylated H2A represents a good candidate, as H2A is
predominately ubiquitylated up to 10% in mammalian
cells [31]. An investigation of the dynamic changes in
H2A ubiquitylation in response to UV irradiation revealed
an interesting finding. In normal lymphoblastoid cells,
the levels of H2A ubiquitylation drop dramatically upon
irradiation (detectable at 0 min), begin to recover at 30
min, and restore to normal levels at 2 hrs. However, in the
DDB2 mutant XP-E cells, the recovery of uH2A was not
observed. Based on these experiments, the authors sug-
gested that deubiquitylation of H2A may serve as a stress
sensor in the initial phase of UV irradiation and that the
Cul4 E3 ligase is responsible for restoring the normal lev-
els of H2A ubiquitylation in the later phase of repair.
Moreover, this study identified DDB2 as a key subunit for
histone H2A ubiquitylation, which is in conflict with pre-
vious reports that Ring2 ubiquitylates histone H2A in vivo
[27,32]. The changes in H3 and H4 ubiquitylation in
response to UV irradiation were not observed in this
study, possibly due to the low levels of H3 and H4 ubig-
uitylation and the lack of available antibodies against
ubiquitylated histone H3 and H4 [26].

The dynamic changes of H2A ubiquitylation in response
to UV irradiation were also noted by Bergink et al., how-
ever, different profiles were observed for H2A ubiquityla-
tion after UV irradiation [33]. Employing single living cell
imaging technology, the authors found that local UV irra-
diation caused an enrichment of ubiquitin conjugate at
the UV damage foci. The ubiquitin conjugate was identi-
fied as ubiquitylated H2A, as it could be recognized by the
ubiquitylated H2A-specific antibody [34]. A link between
H2A ubiquitylation and cellular damage repair was
uncovered by the finding that the UV-induced enrichment
of ubiquitylated H2A was absent in the NER-deficient
XPA, XPC, XPG, and XPF cells but remains intact in the
XPV cells, which are not defective in NER pathway but
carry a mutant DNA polymerase 1. This experiment estab-
lished the dependence of H2A ubiquitylation on the NER
pathway and suggests that H2A ubiquitylation functions
in late stages of the repair process e.g., after incision of the
damaged strand. Consistent with the notion that Ring? is
the H2A-specfiic ubiquitin ligase [27,32], Ring2 was
found to be required for H2A ubiquitylation during this
process. Therefore, in contrast to Kapetanaki's reports
[18], an increase of H2A ubiquitylation in response to UV
irradiation was observed in this study.

Conclusion

The three recent studies point to the intriguing link
between histone ubiquitylation (H3, H4, and H2A) and
the cellular response to DNA damage, although a number
of discrepancies were found in detailed results [18,26,35].
We believe that these discrepancies are due to the experi-
mental approaches employed in each study, which
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Figure 2

A model depicting the involvement of histone ubiquitylation in the cellular response to UV damage. (A). Upon UV irradiation,
the histone ubiquitin ligase CUL4-DDB-ROCI is recruited to the damaged chromatin through DDB2. Meanwhile, the ubiquitin
moiety is cleaved from ubiquitylated H2A when cells sense the DNA damage. (B). CUL4-DDB-ROCI ubiquitylates histones
around the lesion, using ubiquitin released from H2A deubiquitylation. (C). Histone ubiquitylation by CUL4-DDB-ROCI causes
histone eviction from the damaged nucleosome. Meanwhile, Cul4 E3 ligase ubiquitylates DDB2 and XPC, resulting in the
release of Cul4 E3 ligase from the damaged DNA and facilitating the binding of XPC to the damaged DNA. (D). After the
repair processes, histone H2A around the DNA lesion is ubiquitylated in a Ring2 or Cul4 dependent manner.

Page 5 of 7

(page number not for citation purposes)



Cell Division 2006, 1:14

focused on different aspects of histone ubiquitylation and
DNA damage responses, and therefore, only caught por-
tions of the whole picture. Based on these and previous
studies, we propose a sequential model for the involve-
ment of histone ubiquitylation in the cellular response to
DNA damage (Figure 2).

Upon UV irradiation, CUL4-DDB-ROCI1 is recruited to
the damage foci through the binding of DDB2 to the dam-
aged DNA [18,19]. Meanwhile, the ubiquitin moiety is
cleaved from the ubiquitylated H2A [18] when cells sense
the genotoxic stress [36,37] (Figure 2A, these responses
could be detected at 0 min after UV irradiation). CUL4-
DDB-ROC1 ubiquitylates histones around the DNA
lesions (mainly H3 and H4, detectable as early as 5~10
min after UV irradiation) [26]. The ubiquitin for the reac-
tion may come from the deubiquityaltion of H2A [18]
(Figure 2B). Histone ubiquitylation by CUL4-DDB-ROC1
weakens their interaction with DNA and causes histone
eviction from the damaged nucleosomes [26]. Mean-
while, ubiquitylation of DDB2 and XPC by Cul4 E3 ligase
changes their damaged DNA binding activity, causing the
release of Cul4 E3 ligase and facilitating the binding of
XPC to the damaged DNA [20] (Figure 2C). Finally, after
the NER process, the restored nucleosomes around the
lesions (which can be up to 10-30 kbp long) [35] are
ubiquitylated at histone H2A by the Ring2 or Cul4 his-
tone ubiquitin ligases (Figure 2D, detectable 30 min after
UV irradiation) [18,35]. The functional significance of
H2A ubiquitylation after NER is not clear. One possibility
is to facilitate the chromatin fiber restoring its original
configuration, however, this notion is mainly a specula-
tion.

Based on this model, Cul4 E3 ligase plays a central role in
the cellular response to UV damage by coordinately ubig-
uitylating a number of different substrates (Figure 2). To
validate this model, the dynamic association of ubiquit-
ylated histones (H3/H4 vs H2A) and protein factors with
the damaged DNA will have to be monitored at high tem-
poral resolution after UV irradiation. However, UV-
induced DNA lesions are not sequence-specific, so the
standard chromatin immunoprecipitate protocol has to
be modified.

The unveiling of the link between Cul4 E3 ligase and his-
tone ubiquitylation sheds light on the mechanism of
Cul4-mediated heterochromatin assembly [38]. Recently,
Cul4 was found to interact with the heterochromatin pro-
tein Rik1 (share extensive homology with DDB1) and the
H3K9 methyltransferase Clr4 in fission yeast [39-41].
Mutation of Cul4 or expression of the dominant negative
Cul4 results in dysfunction of all heterochromatin
regions. Does Cul4-mediated histone ubiquitylation play
a role in this process? H2B ubiquitylation in budding
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yeast could regulate the activity of methyltransferases
Dotl and Setl, allowing them to di- and tri-methylate
lysine residues [42]. Is there a similar mechanism operat-
ing between Clr4 and Cul4-mediated histone ubiquityla-
tion? Further investigations will clarify these issues.
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