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Abstract
The retinoblastoma (Rb) tumor suppressor gene product, pRb, has an established role in the
implementation of cellular senescence, the state of irreversible G1 cell cycle arrest provoked by
diverse oncogenic stresses. In murine cells, senescence cell cycle arrest can be reversed by
subsequent inactivation of pRb, indicating that pRb is required not only for the onset of cellular
senescence, but also for the maintenance of senescence program in murine cells. However, in
human cells, once pRb is fully activated by p16INK4a, senescence cell cycle arrest becomes
irreversible and is no longer revoked by subsequent inactivation of pRb, suggesting that p16INK4a/
Rb-pathway activates an alternative mechanism to irreversibly block the cell cycle in human
senescent cells. Here, we discuss the molecular mechanism underlying the irreversibility of
senescence cell cycle arrest and its potential towards tumor suppression.

Background
Cellular senescence is the state of stable cell cycle arrest
provoked by a variety of potentially oncogenic stimuli,
such as telomere shortening, DNA damage or activation
of certain oncogenes [1-3]. Cellular senescence appears to
be acting as a barrier to cancer, preventing damaged cells
from undergoing aberrant proliferation [4-10]. Two well
established tumor suppressor proteins, pRb and p53, have
been shown to play key roles in cellular senescence [1-3].
The activities of pRb and p53 are dramatically increased
during cellular senescence and inactivation of these pro-
teins in senescent mouse embryonic fibroblasts (MEFs)
results in the reversal of the senescence phenotype leading
to cell cycle re-entry, suggesting that pRb and p53 are
required not only for the initiation of senescence program
but also for the maintenance of the senescence state in
murine cells [1-3,11,12]. In human senescent cells, how-

ever, once pRb is fully engaged, particularly by its activator
p16INK4a, senescence cell cycle arrest become irreversible
and is no longer revoked by subsequent inactivation of
pRb and p53 [13-15]. Interestingly, subsequent inactiva-
tion of pRb and p53 enables human senescent cells to
reinitiate DNA synthesis but fails to drive the complete
cell cycle, suggesting that these cells may be arrested in G2
or M phase of the cell cycle [13,14]. This pRb- and p53-
independent cell cycle block, which seems to be specific
for human cells, is likely to act as a second barrier to cel-
lular immortalization and may help to explain the
remarkable stability of the senescence cell cycle arrest in
human cells [2,15]. Recent work in our lab has uncovered
an unexpected role for the p16INK4a/Rb-pathway and pro-
vided a new insight into how senescent cell cycle arrest is
enforced in human cells [16]. In this commentary, we will
take a closer look at the genes and mechanism involved.
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The G1/S control in cellular senescence
In higher eukaryotes, pRb is a crucial gatekeeper of cell
cycle progression [17-21]. The activity of pRb is tightly
regulated by various post-translational modifications,
such as phosphorylation, acetylation and ubiquitination,
and is thought to impose a block on G1 progression that
is alleviated by phosphorylation [17-21]. In particular, a
series of cyclin-dependent kinases (CDKs), CDK2, CDK4
and CDK6, play a critical role in the phosphorylation of
pRb [18,22-25]. When pRb is phosphorylated by these
CDKs, pRb loses its ability to bind E2F/DP transcription
factor complexes resulting in entry into S-phase of the cell
cycle [26-28]. However in senescent cells, the activity of
CDKs is blocked by elevated expression of CDK inhibi-
tors, p21Cip1/Waf1/Sdi1 and p16INK4a [29-32]

p21Cip1/Waf1/Sdi1 is a founding member of the mammalian
CDK inhibitor family and is one of the best characterized
transcriptional targets of the p53 tumor suppressor pro-
tein [29,33-36]. Thus, p21Waf1/Cip1 links the p53- pathway
to the Rb- pathway, providing a tight security network
towards tumor suppression. Indeed, the role of p21Cip1/

Waf1/Sdi1 expression is well documented in various cell cul-
ture studies; up-regulation of p21Cip1/Waf1/Sdi1 expression
participates in processes such as DNA damage-induced
cell cycle arrest, cellular senescence and terminal differen-
tiation that may prevent tumor formation [22]. However,
since mutations in the p21Waf1/Cip1/Sdi1 gene are rarely
observed in human cancers and mice lacking p21Waf1/Cip1/

Sdi1 gene do not exhibit any predisposition to spontaneous
tumor formation [37-40], it remains unclear whether
p21Cip1/Waf1/Sdi1 indeed plays a key role in tumor suppres-
sion in vivo.

The INK4a gene encodes another type of CDK inhibitor,
p16INK4a, which specifically binds to and inactivates D-
type CDKs, CDK4 and CDK6 [41]. The binding of
p16INK4a to CDK4/6 also induces redistribution of Cip/Kip
family CDK inhibitors, p21Cip1/Waf1/Sdi1 and p27Kip1, from
cyclinD-CDK4/6 to cyclinE-CDK2 complexes resulting in
the inactivation of CDK2-kinase [22,42,43]. Thus, induc-
tion of p16INK4a collaborates with p21Cip1/Waf1/Sdi1 to pre-
vent phosphorylation of pRb, leading to a stable G1 arrest
in senescent cells [32]. Importantly, the p16INK4a gene is
frequently inactivated in a wide range of human cancers
and is therefore recognized as a tumor suppressor gene
[32]. This may also be because the coding region of the
p16INK4a gene is partly shared with another tumor sup-
pressor gene called p14ARF (also called as p19ARF in
mouse) [32,44,45]. In human cancer, however, a large
number of the point mutations within this region only
affect p16INK4a activity but not p14ARF activity, indicating
that p16INK4a /Rb-pathway, in itself, also play key roles in
tumor suppression [32].

Cytokinetic block: a second barrier in cellular 
senescence
Although p16INK4a is known to exert its effects through
pRb, subsequent inactivation of pRb stimulates DNA syn-
thesis but not cell proliferation if p16INK4a is ectopically
expressed prior to inactivation of pRb in human cells [14].
By contrast, inactivation of pRb is sufficient to override
the p16INK4a effect if pRb is inactivated prior to p16INK4a

expression [14]. It is therefore likely that once pRb is fully
activated by p16INK4a, pRb activates yet another mecha-
nism that irreversibly causes cell cycle arrest either in G2
or M phase [2,13,14]. Indeed, a dramatic increase of poly-
nucleated cells is observed when pRb and p53 were subse-
quently inactivated in human cells expressing high level
of p16INK4a [16], suggesting that this mechanism may tar-
get cytokinesis.

To delineate the molecular events underlying this cytoki-
netic block in human senescent cells, we took advantages
of using SVts8 cells, a conditionally immortalized human
fibroblasts cell lines that express a temperature-sensitive
(ts) mutant of simian virus 40 large T antigen (LT) and ele-
vated level of endogenous telomerase [46,47]. Using
SVts8 cells, we were able to examine the irreversibility of
senescence cell cycle arrest under various different condi-
tions and have shown that p16INK4a/Rb-pathway cooper-
ate with mitogenic signals to enforce irreversible
cytokinetic block through activating production of reac-
tive oxygen species (ROS) [16].

Although ROS are required for the physiological function
of the cells, excessive ROS cause anti-proliferative effects
such as apoptosis and/or cellular senescence [48]. During
low stress condition, mitogenic signals inactivate pRb and
therefore activate E2F/DP complexes to stimulate S-phase
entry [22,26-28]. Moreover, E2F/DP activation decrease
ROS levels by regulating genes involved in ROS produc-
tion [16]. Thus, although mitogenic signals have the
potential to stimulate ROS production, this effect appears
to be counterbalanced by E2F/DP activity in proliferating
normal human cells [16]. In condition of high cellular
stress, however, the activity of E2F/DP is blocked by
p16INK4a/Rb-pathway. In this setting, mitogenic signaling,
in turn, increases the ROS production, thereby activating
PKCδ, a critical downstream mediator of the ROS signal-
ing pathway [16,49,50]. Importantly moreover, once,
activated by ROS, PKCδ, promotes further generation of
ROS, thus establishing a positive feed back loop to sustain
ROS- PKCδ signaling [16]. Sustained activation of ROS-
PKCδ signaling irreversibly blocks cytokinesis, at least
partly through reducing the level of WARTS (also known
as LATS1), a mitotic exit network (MEN) kinase required
for cytokinesis [51-53], in human senescent cells [16].
Thus, elevated levels of p16INK4a establish an autonomous
activation of ROS- PKCδ signaling, leading to an irrevoca-
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ble block to cytokinesis in human senescent cells (see
model in Figure 1). This system may serve as a fail-safe
mechanism, especially in case of the accidental inactiva-
tion of pRb and p53 in human senescent cells [15,16]. It
is noteworthy that we were unable to see activation of
PKCδ during replicative senescence in MEFs [16]. This dif-
ference may account for the reversibility of murine cell
senescence.

Concluding remarks
Although we can not rule out the possibility that other
mechanisms might also involved in the irreversible senes-
cence cell cycle arrest [54-59], our results reveal a novel
activity of the p16INK4a/Rb- pathway and facilitate our
understanding of how cellular senescence is securely con-
trolled in human primary cells. Understanding the strict
irreversibility of cellular senescence will provide valuable

new insights into the development of cancer and open up
new possibilities of its control [60-62].

Abbreviations
CDKs: cyclin dependent kinases

pRb: the retinoblastoma tumor suppressor gene product

ts: temperature sensitive

LT: simian virus 40 large T antigen

MEFs: mouse embryonic fibroblasts

ROS: reactive oxygen species

MEN: mitotic exit network

The roles of p16INK4a/RB-pathway in senescence cell cycle arrestFigure 1
The roles of p16INK4a/RB-pathway in senescence cell cycle arrest. In proliferating cells, the effects of mitogenic signals 
in ROS production are counterbalanced by E2F/DP activity. However, when E2F/DP activity is shut down by fully activated 
pRb, mitogenic signaling, in turn, increases the level of ROS and elicits a positive feedback activation of ROS/PKC-δ signaling 
pathway. Elevated levels of p16INK4a therefore establish an autonomous activation of ROS/PKC-δ signaling, leading to an irrevo-
cable block to cytokinesis in human senescent cells.
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