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Abstract
The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle
control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the
fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the
timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals
contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is
now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least
three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing
centre of their respective species, namely the centrosome or spindle pole body. Here, they have
important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases
have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in
regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence
that NIMA-related kinases make a significant contribution to the orchestration of mitotic
progression and thereby protect cells from chromosome instability. Furthermore, we highlight
their potential as novel chemotherapeutic targets.

Background
In 1975, Ron Morris undertook a genetic screen for tem-
perature-sensitive mutants that failed to progress through
the cell cycle in the filamentous fungus, Aspergillus nidu-
lans [1]. Analysis of the resulting mutants led to some
being classified as "bim", as they became blocked in mito-
sis, while others were called "nim", as they were never in
mitosis. The first nim gene to be characterized, nimA,
turned out to encode a serine/threonine protein kinase
essential for entry into mitosis [2-4]. Mutants arrested in
G2 when shifted to the restrictive temperature and only
entered mitosis upon return to the permissive tempera-
ture, while overexpression of wild-type NIMA drove cells
into a premature mitosis from any point in the cell cycle
[5].

At a similar time, Paul Nurse and Lee Hartwell had under-
taken genetic screens for cell division control mutants in
fission and budding yeast, respectively, that would ulti-
mately lead to the Nobel Prize in 2001 [6]. Significantly,
homologues of NIMA were not identified in these screens
and, when they were eventually identified by sequence
comparison, the Kin3 kinase in budding yeast and the
Fin1 kinase in fission yeast were confirmed as non-essen-
tial genes in these organisms [7,8]. At first sight, it there-
fore appeared that NIMA function might only be required
for nuclear division events in the syncitial filamentous
type fungi and interest in these kinases remained low-key.
However, tantalizing data emerged from the Nurse and
Hunter labs in the mid-1990s showing that expression of
Aspergillus NIMA in fission yeast or vertebrate cells also
induced aspects of a premature mitosis, most notably pre-
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mature chromatin condensation [9,10]. These results
were the first evidence that, like other key regulators of the
cell cycle, kinases related to NIMA may be important
mitotic regulators in higher eukaryotes after all.

The first mammalian NIMA-related kinases, Nek1, Nek2
and Nek3, were described by the Pawson and Nigg groups
in the early 1990s [11,12]. However, sequencing of the
human and mouse genomes unexpectedly revealed the
presence of eleven genes that encode a distinct clade of
mammalian serine/threonine kinases related to NIMA
[13]. Hence, this family, termed Nek1 to Nek11, consti-
tutes approximately 2% of the entire human kinome (Fig-
ure 1). These kinases share approximately 40–45%
identity with NIMA within their N-terminal catalytic
kinase domains, but the C-terminal non-catalytic regions
are highly divergent suggesting that each kinase might
have a distinct function [14]. Nevertheless, data is now
fast emerging that at least four of these kinases, Nek2,
Nek6, Nek7 and Nek9, are likely to be important regula-
tors of mitotic progression. In this review, we summarize

what is known about the mechanism of action of NIMA
and Fin1 in fungal mitoses and then focus on how these
four vertebrate kinases might also contribute to cell divi-
sion.

NIMA and Fin1 in fungal mitosis
Aspergillus NIMA is essential for mitotic entry and its deg-
radation is necessary for mitotic exit [3,15]. On the other
hand, whilst mutations can delay mitotic entry, fission
yeast Fin1 is not essential for viability [8,16]. Despite this
apparent difference, careful studies on these two fungal
kinases have revealed a number of mechanisms by which
they might both participate in the control of mitotic entry,
chromatin condensation, spindle formation and cytoki-
nesis (Figure 2). NIMA may be essential for mitotic entry
as it is required to localize the master mitotic regulator,
Cdc2/cyclin B, to the nucleus at this time [17]. Fungi like
Aspergillus and yeast undertake a closed mitosis in which
the nuclear envelope remains intact. Therefore, to initiate
chromatin condensation and spindle formation within
the nucleus, Cdc2/cyclin B must be translocated to the

The NIMA-related kinase familyFigure 1
The NIMA-related kinase family. A. A phylogenetic tree generated by a manually edited multiple sequence alignment of 
the catalytic domains of the eleven human NIMA-related kinases using the Neighbor Joining method in ClustalX. B. A sche-
matic representation of the two fungal (Aspergillus NIMA and S. pombe Fin1) and four mammalian (Nek2, Nek6, Nek7 and 
Nek9) NIMA-related kinases implicated in mitotic regulation indicating the relative positions of different domains and motifs. 
Three splice variants of Nek2 have been described; the longest of these, Nek2A, is shown here. Numbers represent protein 
length in amino acids.
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nucleus. Screening for extragenic suppressors of the nimA1
allele led to identification of two components of the
nuclear pore complex, SONA, a homologue of yeast Gle2/
Rae1, and SONB, a homologue of human Nup98. These
genetic interactions suggest that NIMA might directly par-
ticipate in the nuclear uptake of Cdc2/cyclin B through the
nuclear pore [17,18].

NIMA activity is also required to promote localization of
Cdc2/cyclin B to the spindle pole body (SPB), the major
microtubule organizing centre (MTOC) in fungi and func-
tional equivalent of the higher eukaryotic centrosome
[17]. In mammals, Cdk1 (the homologue of Cdc2) is first
activated at the centrosome suggesting that concentration
of cell cycle regulators at centrosomes/SPBs may be a con-
served mechanism for switching on Cdc2/cyclin B activity
at the onset of mitosis [19]. In fission yeast, although
there is no evidence yet that Fin1 is required to localize

Cdc2/cyclin B to either the nucleus or SPB, Cdc2/cyclin B
is present on mitotic SPBs [20]. Moreover, Fin1 is required
to localize the polo-like kinase, Plo1, to the SPB [16], and
Plo1 potentiates the activation of Cdc2/cyclin B via phos-
phorylation and activation of the intermediary phos-
phatase, Cdc25 [21]. This would explain why activation of
Cdc2/cyclin B and mitotic commitment is delayed in
some fin1 mutants, even if they eventually enter mitosis,
[8,16]. However, in nimA mutants arrested in G2, Cdc2/
cyclin B is fully active and the Aspergillus polo-like kinase,
PLKA, appears to be correctly localized at the SPB [3,22].
Nevertheless, whilst the molecular pathways may be sub-
tly different, both fungal kinases contribute to the timing
of mitotic onset through regulation of Cdc2/cyclin B
localization and/or activation. Furthermore, NIMA can be
phosphorylated and activated by Cdc2/cyclin B suggesting
the existence of a positive feedback loop typical of many
pathways regulating cell cycle transitions [23].

Regulation of mitotic events by fungal NIMA-related kinasesFigure 2
Regulation of mitotic events by fungal NIMA-related kinases. The Aspergillus NIMA kinase and fission yeast Fin1 kinase 
regulate multiple events during mitotic progression. Both proteins contribute to the timing of mitotic entry through controlling 
the localization and/or activation of the Cdc2/cyclin B kinase (Plo1 is an upstream activator of Cdc2/cyclin B). However, the 
relative importance of NIMA and Fin1 in this event appears to vary as nimA mutants block mitotic entry, whereas fin1 mutants 
only delay mitotic entry. Both proteins are also strongly implicated in regulation of mitotic spindle formation. In addition, 
NIMA promotes chromatin condensation, while Fin1 is involved in the pathway regulating cytokinesis. Unfortunately, the 
mechanisms by which these kinases operate remain poorly understand primarily because few direct substrates (indicated in 
red) have been identified.
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Few substrates of NIMA have been identified apart from
histone H3 which is phosphorylated by NIMA on Ser-10
[24]. Phosphorylation of H3 Ser-10 is closely correlated
with chromatin condensation in many eukaryotes and
this could explain why ectopic expression of NIMA drives
premature chromatin condensation in yeast, Xenopus and
human cells [9,10]. However, in most species, phosphor-
ylation of histone H3 on Ser-10, and its close relative
CENP-A on the equivalent Ser-7, is primarily executed by
the Aurora B kinase [25]. Initial studies suggested that
Fin1 overexpression also triggered premature chromatin
condensation [8]; however, this was not accompanied by
the usual recruitment of condensin and topoisomerase II
raising the question of whether this truly reflected a nor-
mal mitotic condensation process [26].

Overexpression of NIMA in Aspergillus also promotes tran-
sient formation of mitotic spindle-like structures [5]. The
reason for this remains elusive, although the fact that
NIMA and Fin1 localize to mitotic SPBs suggests a poten-
tial role in microtubule nucleation, as well as Cdc2/cyclin
B activation [17,26,27]. Indeed, an elegant screen for
genes required for correct spindle architecture led to the
isolation of a temperature-sensitive fin1 mutant in which
only one of the two SPBs in mitotic cells could nucleate
microtubules leading to assembly of monopolar spindles
[16]. This caused severe defects in the first mitosis after
shift to the restrictive temperature, although cells
appeared to adapt to the loss of Fin1 in subsequent divi-
sions. A similar spindle pole phenotype was observed
when Aspergillus nimA mutants were forced into mitosis by
additional mutation of the BIME APC/C subunit [28].
Epistatic interactions with spindle checkpoint mutants
further support a requirement for Fin1 in formation of a
robust mitotic spindle [16,26]. Yeast two hybrid interac-
tions screens identified Aspergillus TINA as a partner of
NIMA [29]. TINA specifically localizes to the SPB in mito-
sis and its deletion leads to excessive nucleation of astral
cytoplasmic microtubules during mitosis, albeit without
obviously affecting spindle formation. TINA may there-
fore act to suppress cytoplasmic microtubule nucleation
during mitotic progression, although the relative impor-
tance of this to nuclear spindle formation and what role
NIMA has in controlling TINA function are currently
unknown.

In the later stages of mitosis, Fin1 plays a key role in the
timing of mitotic exit through modulation of signalling in
the septum initiation (SIN) pathway [27]. In a manner
analogous to that described above for mitotic entry, many
key regulators of the SIN pathway congregate at the SPB,
although in this case there is asymmetric concentration to
just one, the younger, SPB [30]. In the absence of Fin1
function, SIN regulators are activated on both SPBs
enhancing the signal for septation; this implies that Fin1

activity is required to block SIN activation on the older
SPB, perhaps to prevent premature septation. Fin1 also
associates with the central spindle in late mitosis,
although to what purpose is not known [27]. In summary,
the exact requirement for NIMA-related kinases in fungal
mitoses is likely to vary from organism to organism, but
significant overlap is seen in how these enzymes ensure
that mitotic events occur with proper timing and fidelity
thereby reducing the likelihood of acquiring genetic dam-
age during cell division.

Nek2: a functional homologue of NIMA?
Of the eleven mammalian Neks, the most closely related
by sequence within the catalytic domain to NIMA and
Fin1 is Nek2 and, biochemically, NIMA and Nek2 share
many common properties [31,32]. These reasons initially
led to Nek2 becoming the most closely studied family
member in higher eukaryotes [33,34]. Like NIMA and
Fin1, Nek2 exhibits a cell cycle-dependent expression and
activity profile that strongly suggest a role in mitosis [31].
However, Nek2 does not rescue the phenotypes of nimA
mutation or Fin1 deletion and so it cannot be considered
as the direct homologue [14]. Nevertheless, there are a
number of aspects to Nek2 biology that suggest a signifi-
cant conservation of function.

Nek2 expression is maximal in S and G2 of the cell cycle
when a major fraction of the protein localizes to the cen-
trosome. Hence, like NIMA and Fin1, Nek2 is a compo-
nent of the MTOC at the time of mitotic entry. Indeed,
Nek2 kinases from Dictyostelium and Drosophila through
to Xenopus and humans are localized to centrosomes
where they firstly contribute to their structural integrity
[35-38]. However, there is little evidence at the present
time that Nek2 regulates the timing of mitotic entry by
promoting the recruitment of either Plk1 or Cdk1/cyclin
B to the centrosome. Instead, it appears to play a more
direct role in enabling bipolar spindle formation through
initiating the separation of centrosomes at the G2/M tran-
sition. The first evidence for this came from showing that
overexpression of active, but not catalytically-inactive,
Nek2 stimulates centrosome separation in interphase cells
[35]. Similarly, more recent work showed that RNAi
depletion of Nek2 inhibits centrosome separation with-
out significantly affecting mitotic entry [39]. This model
was further corroborated by the demonstration that Nek2
interacts with and phosphorylates at least two compo-
nents of the intercentriolar linkage, C-Nap1 and rootletin
[40,41]. This structure acts as a bridge or tether that holds
the two centrosomes in close proximity during interphase,
but which must be dismantled to allow centrosome sepa-
ration to occur. Indeed, C-Nap1 and rootletin, which also
interact with each other [40,42], are displaced from the
centrosome in late G2 and thus are absent from mitotic
spindle poles. The current working model is that Nek2
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phosphorylates C-Nap1 and rootletin triggering dissocia-
tion from the centrosome, and possibly each other, lead-
ing to loss of centrosome cohesion (Figure 3). This allows
centrosomes to be driven apart to the two poles of the
emerging mitotic spindle by microtubule-based motor
proteins, such as Eg5.

A common feature of the C-terminal regulatory domains
of several NIMA-related kinases is the presence of a coiled-
coil motif immediately downstream of the catalytic
domain. In NIMA, this region is essential for high copy
overexpression to cause toxicity suggesting that it is essen-
tial to NIMA function [15], while, in Nek2, this coiled-coil
acts as a dimerization motif facilitating autophosphoryla-
tion and kinase activation [43]. Recent structural studies
on Nek2 have identified key sites of autophosphorylation
within the catalytic domain [44], and the requirement for
autophosphorylation provides a strategy to prevent the

premature activation of Nek2, and thus inappropriate sep-
aration of centrosomes, in interphase. Protein phos-
phatase 1 (PP1) binds directly to a KVHF motif in the
non-catalytic C-terminal region leading to dephosphor-
ylation and inactivation of Nek2 and, potentially, simul-
taneous dephosphorylation of associated substrates, such
as C-Nap1 and rootletin [45,46]. Conversely, Nek2 can
phosphorylate and inhibit PP1. This mutually antagonis-
tic complex acts as an extremely sensitive "bistable switch"
that enables a rapid increase in Nek2 autophosphoryla-
tion and activation to occur upon inhibition of PP1 by the
Inhibitor-2 protein at the onset of mitosis [47].

Ninein-like protein (Nlp) and centrobin are other poten-
tial substrates of Nek2 that reside at the centrosome,
although, interestingly, Nlp preferentially associates with
the older centrosome whereas centrobin asymmetrically
associates with the younger centrosome [48,49]. Both are
large coiled-coil proteins broadly implicated in the nucle-
ation and/or anchoring of microtubules. Like C-Nap1 and
rootletin, endogenous Nlp is displaced from the centro-
some upon mitotic onset while recombinant Nlp is dis-
placed by Nek2 overexpression [49]. Centrobin is also
displaced from interphase centrosomes upon Nek2 over-
expression, but, in untreated cells, centrobin remains
present at centrosomes throughout mitosis [50]. These
two substrates therefore implicate Nek2 in modification
of microtubule organization at the G2/M transition. Nlp is
also a substrate of the polo-like kinase, Plk1 [51], and, as
recruitment of Plk1 to its substrates requires their prior
phosphorylation by so-called priming kinases, this raises
the question of whether Nek2 is a priming kinase for Plk1
on the substrate Nlp. If it is, then Nek2 could potentially
contribute to Plk1 recruitment to the centrosome after all
through regulating its interaction with Nlp. This will be an
important question to resolve as it could reflect similarity
with the function of Fin1 in Plo1 recruitment, which inci-
dentally also requires a coiled-coil protein, Cut12 [16,21].

A part from centrosomal functions, Nek2 may well have
other roles in mitotic progression. Reminiscent of the
phenotype induced by overexpression of NIMA in higher
eukaryotes, murine Nek2 is implicated in chromatin con-
densation, at least in meiotic spermatocytes. In these cells,
there is evidence that Nek2 phosphorylates the chromatin
bound protein, HMGA2, downstream of the Erk1/p90Rsk2

pathway [52,53]. Nek2C is a splice variant that exhibits
preferential translocation into the nucleus; however,
whilst this supports a nuclear function of Nek2, overex-
pression of Nek2C alone does not induce premature chro-
matin condensation or phosphorylation of histone H3 in
mitotic cells [54]. Nek2 has also been reported to interact
with several components of the mitotic checkpoint, most
notably Hec1 and Mad1 [55,56]. The significance of these
interactions remains unclear as functional studies have

Nek2 promotes centrosome separation at mitotic onsetFigure 3
Nek2 promotes centrosome separation at mitotic 
onset. G2 cells contain a duplicated centrosome that con-
sists of two pairs of centrioles (yellow cylinders) surrounded 
by pericentriolar material (grey cloud). It is proposed that 
the two centrosomes lie in close proximity as a result of a 
proteinaceous linker that connects the proximal ends of the 
parental centrioles. This structure contains at least two pro-
teins, C-Nap1 (blue disc) and rootletin (red fibres). At this 
time, the Nek2 kinase, which exists as a stable homodimer, is 
inhibited by the protein phosphatase, PP1. Upon entry into 
mitosis, PP1 itself is inhibited as a result of binding of the 
Inhibitor-2 protein (Inh-2), an interaction that may be stimu-
lated by Cdk1. The consequence is that Nek2 kinase is acti-
vated leading to phosphorylation and displacement of C-
Nap1 and rootletin from the centrosome. The two discon-
nected pairs of centrioles can then be driven apart to form 
the two poles of the emerging mitotic spindle.

Phosphorylation and

displacement of

C-Nap1 and rootletin

PP1

Nek2kk

Nek2

Inh-2

Cdk1
+

G2 M
Page 5 of 12
(page number not for citation purposes)



Cell Division 2007, 2:25 http://www.celldiv.com/content/2/1/25
not revealed a direct role for Nek2 in mitotic checkpoint
signalling. However, suppression or inhibition of Nek2 in
early mouse and Xenopus embryos led to abnormal spin-
dle structures and abortive cleavages that could reflect
both centrosomal and mitotic checkpoint defects [37,57].

Finally, it is conceivable that, as for Fin1, Nek2 could have
a role in late mitosis/cytokinesis. Nek2A, the most abun-
dant splice variant, is degraded in an APC/C-dependent
manner after mitotic entry in adult cells [58,59]. However,
in early mouse embryos, Nek2A is not degraded and local-
izes to the midbody in late mitosis [57]. Likewise, Nek2B,
a splice variant that lacks the C-terminal destruction sig-
nals, is present in late mitosis in adult cells and specific
depletion of Nek2B has been reported to delay mitotic exit
[39]. Nek2 is also detected at the midbody in late mitosis
in Drosophila where overexpression led to mislocalization
of actin and anillin, and ectopic sites of cleavage furrow
formation [38]. However, substrates of Nek2 remain to be
identified that would provide a mechanistic explanation
for a role in late mitosis.

Nek9 and mitotic spindle formation
The second mammalian Nek to be directly implicated in
mitotic progression was Nek9, also called Nercc1 [60]
and, in one earlier report, Nek8 [61]. Nek9 is one of the
longer Neks with a relatively large C-terminal non-cata-
lytic domain that contains an RCC1 homology region
and, like Nek2, a coiled-coil dimerization motif [14]. Evi-
dence for a role in mitosis has come from observing its cell
cycle-dependent activity and localization, functional
experiments and identification of interacting partners.

The expression of Nek9 protein remains constant through
the cell cycle [60,61]. However, its kinase activity, like that
of NIMA, specifically increases in mitosis [60]. This activa-
tion depends upon the mitotic-specific phosphorylation
of T210 in the activation loop. Whether this is an auto-
phosphorylation event is unclear, but mutants lacking the
coiled-coil dimerization motif have significantly reduced
activity. Interestingly, deletion of the RCC1 domain leads
to a hyperactive kinase indicating that this region may be
required for autoinhibition of Nek9 [60]. The protein
sequences of both Aspergillus NIMA and vertebrate Nek9
contain a number of potential Cdk1 phosphorylation
sites; however, it remains to be proven whether either
enzyme is a substrate of Cdk1/cyclin B in vivo. In terms of
localization, both endogenous and recombinant full-
length Nek9 are diffusely distributed within the cyto-
plasm in interphase and mitosis [60-62]. However, a
number of Nek9 mutants localize to the nucleus in certain
cell types suggesting that a nuclear localization sequence,
immediately downstream of the catalytic domain, is func-
tional but tightly regulated [60,62]. More pertinently, gen-
eration of a phosphospecific antibody against the

phospho-T210 site revealed concentration of activated
Nek9 on spindle poles during mitosis [63]. Similarly,
Xenopus Nek9 was detected on the poles of spindles
assembled in vitro in frog egg extracts [63]. Hence,
although the bulk of the protein may be soluble in the
cytoplasm, a fraction of the protein may be tightly associ-
ated with the centrosome where it can be specifically acti-
vated, possibly by Cdk1/cyclin B, at the onset of mitosis
[19].

Functional experiments have also implicated Nek9 in
mitotic progression and, specifically, in spindle organiza-
tion. First of all, expression of wild-type and kinase-inac-
tive Nek9 proteins in human cells led to a reduced mitotic
index and an accompanying increase in apoptosis, while
expression of constructs that localize to the nucleus led to
micronucleated and multinucleated cells, phenotypes that
are often associated with defective mitoses [60]. Secondly,
injection of anti-Nek9 antibodies into human cells
appeared to block mitotic entry. However, more recent
RNA interference experiments in which almost complete
depletion of Nek9 in human cells was achieved did not
lead to any major alteration in cell cycle progression [62].
In agreement with this, immunodepletion of Nek9 from
Xenopus egg extracts did not prevent cell cycle progression
in vitro [63]. Nevertheless, while Nek9 may not be essen-
tial for mitotic entry, there is clear evidence that it is nec-
essary for the accurate segregation of chromosomes. Cells
injected with anti-Nek9 antibodies after mitotic entry
accumulated defects in mitotic spindle formation and
chromosome segregation. Furthermore, depletion experi-
ments in Xenopus egg extracts revealed problems with both
bipolar spindle formation from sperm chromatin and
microtubule aster formation induced by addition of a
constitutively active Ran GTPase mutant (Q69L) [63].
Together, these data imply that Nek9 may contribute to
both centrosomal (sperm chromatin) and acentrosomal
(Ran-Q69L) pathways of spindle formation, although the
precise mechanisms of action remain obscure.

The presence of the RCC1-like domain and the effect on
Ran-mediated aster formation in vitro raised the strong
possibility that Nek9 might regulate spindle formation via
the Ran GTPase. RCC1 is a guanine nucleotide exchange
factor (GEF) that stimulates Ran-GTP formation. In mito-
sis, RCC1 is concentrated on condensed chromatin creat-
ing a gradient of Ran-GTP that increases towards the DNA.
Ran-GTP binds to importin-α triggering release of spindle
promoting factors, such as TPX2, in the vicinity of the
chromatin [64]. Binding experiments indicated that Ran
does indeed bind to Nek9 via the RCC1 domain as well as,
surprisingly, its catalytic domain [60]. However, whereas
RCC1 is an active GEF, the RCC1-like domain of Nek9
lacks some of the critical amino acids required for such
activity suggesting that Nek9 may not function as a GEF,
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although this has yet to be directly tested [61]. Equally,
the interaction between Ran GTPase and Nek9 does not
seem to regulate Nek9 activity. Hence, whilst the presence
of this domain, the interaction with Ran and the regula-
tion of Ran-induced microtubule aster formation are
intriguing, it remains to be determined how Nek9 and
Ran cooperate in spindle organization.

Other microtubule and centrosome related proteins have
been identified as partners for Nek9 that shed further light
on its putative spindle function; these include Bicaudal-D
and γ-tubulin. The Bicaudal-D2 isoform was identified as
a partner and substrate of Nek9 following copurification
of the two proteins from rabbit lung [61]. Bicaudal-D pro-
teins are involved in dynein-mediated microtubule-
dependent transport and have recently been implicated in
microtubule anchoring at the centrosome [65]. Mean-
while, immunoprecipitates of Nek9 from Xenopus egg
extracts contained γ-tubulin and other members of the γ-
tubulin ring complex [63]. This key component of the
centrosome is absolutely essential for microtubule nucle-
ation. Hence, these interactions, together with the locali-
zation data, suggest that Nek9, like Nek2, may directly
regulate centrosomal microtubule anchoring and/or
nucleation during spindle assembly.

Consistent with the localization of certain Nek9 mutants
to the nucleus, Nek9 has been reported to interact with
the 600 kDa chromatin-associated complex, FACT, that
facilitates polymerase progression during DNA transcrip-
tion and replication [66], and with the adenoviral nuclear
oncoprotein, E1A [62]. The interaction with FACT and the
detection of a minor G1/S delay upon Nek9 depletion was
used to imply a potential role in G1/S progression [66].
However, this remains to be substantiated as other RNAi
studies showed no defect in cell cycle progression [62].
The association with E1A appears to stimulate removal of
Nek9 from the nucleus and, as most viral oncoproteins
promote cell cycle progression, this would argue that
nuclear Nek9 may somehow act as a negative regulator of
the cell cycle. Clearly, the relevance and purpose of these
interactions requires further study.

Finally, Nek6, and by analogy the closely-related Nek7,
have also been established as partners and substrates of
Nek9, binding to the region of Nek9 between the RCC1-
like domain and the coiled-coil motif [60]. Although the
interaction between Nek6 and Nek9 is stable, assays with
various mutants seem to indicate that Nek6 needs to be
active for this interaction to take place, whereas Nek9 does
not [67]. Furthermore, the C-terminal region of Nek9 can
act as a negative regulator of Nek6 and Nek7 activity. It is
therefore proposed that Nek9 acts upstream of Nek6 and
Nek7 phosphorylating and activating these kinases specif-

ically in mitosis (Figure 4). This is discussed in more detail
in the following section.

Nek6 and Nek7: targets of the Nek9 kinase
Nek6 and Nek7 represent the final two NIMA-related
kinases implicated in mitotic progression to date. They are
the smallest and, structurally, the simplest NIMA-related
kinases, consisting solely of a catalytic domain without
the C-terminal regulatory domain common among other
Neks [14]. Nek6 and Nek7 share 87% amino acid identity
within the kinase domain and only significantly differ
from one another within a short N-terminal extension.
These protein kinases, along with the related F196H6.1

Mitotic interactions of the Nek9 kinaseFigure 4
Mitotic interactions of the Nek9 kinase. This figure 
illustrates what is currently known about the potential 
upstream regulation and downstream targets of the Nek9 
kinase during mitosis. It also suggests possible mechanisms by 
which Nek9 might regulate spindle organization, although 
these currently remain only hypotheses. Cdk1 can phosphor-
ylate Nek9 in vitro and both proteins localize to the centro-
some; hence, it is possible that Nek9 is activated upon 
mitotic entry by Cdk1/cyclin B. Once active, it is attractive to 
speculate that Nek9 may regulate chromatin-mediated 
microtubule nucleation as Nek9 can interact with Ran 
through its RCC1-like and catalytic domains. However, it is 
yet to be shown whether Nek9 influences Ran activity or 
vice versa. Equally, Nek9 may regulate centrosome-mediated 
microtubule nucleation and/or anchoring via its interactions 
with the γ-tubulin ring complex (γ-TuRC) and BicD2, respec-
tively. Finally, Nek9 is proposed to activate two other NIMA-
related kinases, Nek6 and Nek7, and, although substrates of 
Nek6 and Nek7 remain to be identified, it is likely that these 
also play important roles in mitotic spindle organisation and 
chromosome segregation.
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from C. elegans, have therefore been suggested to repre-
sent a highly conserved subfamily of the NIMA-related
kinases [68]. Nek6 and Nek7 were initially identified in a
classic biochemical screen for kinases capable of phos-
phorylating the hydrophobic regulatory site of the p70
ribosomal S6 kinase (S6K) [69]. This suggested a role in
growth factor signalling that was at variance with the role
of NIMA in mitotic control. Subsequently, though, it was
shown that despite its ability to phosphorylate and acti-
vate S6K in vitro, S6K was unlikely to be a physiological
substrate of Nek6 [70], and more recent evidence supports
a NIMA-like mitotic role for both Nek6 and Nek7.

Endogenous Nek6 is activated during mitosis, concomi-
tant with an increase in Nek6 protein level [67]. Nek7 pro-
tein, on the other hand, appears to be relatively constant
throughout the cell cycle [71]. Importantly, Nek7 has
been reported to localise to the centrosome in both inter-
phase and mitotic U2OS and HeLa cells [71,72]. Thus, in
common with other NIMA-related kinases implicated in
mitotic regulation, Nek7 is localised to the MTOC at the
time of mitotic entry. However, whereas the presence of
Nek2 at the centrosome promotes spindle pole separation
at the G2/M transition, Nek7, like Nek9, may be more
directly involved in nucleation and organisation of spin-
dle microtubules through recruitment of γ-tubulin and its
partners. siRNA knockdown of Nek7 results in decreased
levels of centrosomal γ-tubulin and a diminished micro-
tubule nucleating activity [71], although to date there is
no evidence to support an interaction between Nek6 and/
or Nek7 with γ-tubulin or its partners. Indeed, Nek6 has
not been shown to localise to the centrosome either at
interphase or mitosis; rather, it has a diffuse, mainly cyto-
plasmic, localisation with no strong association to any
mitotic structures. Nevertheless, overexpression of catalyt-
ically-inactive Nek6 and Nek7 does produce similar phe-
notypes. Typically, cells exhibit increased mitotic indices,
spindle defects, nuclear abnormalities and apoptosis
[72,73]. These phenotypes are also seen upon RNAi
knockdown of either Nek6 or Nek7 in HeLa cells [71-73].
Cells frequently arrest at mitosis with normal chromatin
condensation and alignment but are unable to complete
chromosome segregation. Therefore, Nek6 and Nek7
activity appears to be required for proper anaphase pro-
gression with cells either arresting at the spindle check-
point and undergoing apoptosis, or completing mitosis
but with the acquisition of nuclear abnormalities in the
process. As HeLa cells treated with Nek6 or Nek7 siRNAs
or overexpressing catalytically-inactive Nek6 or Nek7
show significant numbers of abnormal mitotic spindles,
and given the centrosomal localisation of Nek7 and
reduced microtubule nucleating activity of Nek7 depleted
cells, it seems likely that these kinases exert their effects
through organisation of the mitotic spindle.

As previously mentioned, Nek6 and Nek7 copurify with
Nek9 as a result of a specific interaction with a region of
the Nek9 protein close to, but distinct from, its coiled-coil
motif. Nek9 can then stimulate Nek6 and Nek7 activity
through phosphorylation of the Ser206 and Ser195 residues
within the activation loop of Nek6 and Nek7, respectively
[67]. This has led to the working model that Nek6, Nek7
and Nek9 act together in a novel mitotic cascade in which
Nek9, maintained in an inactive state during interphase, is
activated at mitosis resulting in the activation of its down-
stream substrates, Nek6 and Nek7. In turn, these two
kinases coordinate the formation and/or maintenance of
the mitotic spindle. This model is supported by the simi-
larity in defects that arise from interference of either Nek9
or Nek6/Nek7. However, Nek7 is found not only found at
the centrosome during mitosis, but also the spindle mid-
zone and midbody of late mitotic cells [71]. Simultaneous
knockdown of both Nek7 and MAD2, in order to circum-
vent the spindle checkpoint and therefore reduce the met-
aphase arrest phenotype, results in a failure of cells to
undergo cytokinesis. Hence, Nek7 may, in common with
Fin1 and perhaps also Nek2, have an additional role in
late mitosis/cytokinesis.

Many questions clearly remain to be resolved concerning
this putative mitotic Nek cascade. For example, does Nek9
have additional substrates besides Nek6 and Nek7 or are
all of its functions executed through these two kinases.
Likewise, no substrates of Nek6 and Nek7 have been iden-
tified to date, although the most obvious candidates
would be spindle or centrosome components. Another
question is whether Nek6 and Nek7 have entirely redun-
dant roles or whether their distinct N-termini allow differ-
ences in their regulation or function. Whilst interfering
with endogenous Nek6 and Nek7 by overexpression of
catalytically-inactive mutants or RNAi knockdown results
in similar phenotypes, there are reported differences in
their cell cycle-dependent activity and localisation. Fur-
thermore, whilst the two kinases exhibit largely comple-
mentary patterns of tissue expression, they apparently
respond differently under conditions of serum depriva-
tion: Nek7 is rapidly activated by serum deprivation,
whereas Nek6 is inhibited [74].

Nek6 has also been shown to interact with the peptidyl-
prolyl isomerase, Pin1, in the hepatic carcinoma cell line,
Hep3B [75]. Pin1 is not only essential for cell cycle pro-
gression in yeast and mammalian cells, but its depletion
produces a similar mitotic arrest/apoptosis phenotype as
seen upon depletion of Nek6 and Nek7. Pin1 overexpres-
sion is prevalent in human cancers, including liver cancer,
and upregulation of Nek6 mRNA was found to correlate
with Pin1 upregulation in 70% of hepatic cell carcinomas
[75]. This then provides the first evidence tentatively link-
ing Nek6 to carcinogenesis and, together with the fact that
Page 8 of 12
(page number not for citation purposes)



Cell Division 2007, 2:25 http://www.celldiv.com/content/2/1/25
overexpression of catalytically-inactive Nek6 reduces the
growth rate of MDA-MB-231 human breast cancer cells
[73], highlights Nek6 as a potential chemotherapeutic tar-
get.

Conserved roles for Neks in microtubule organization
So far, then, of the eleven human Nek kinases, only Nek2,
Nek6, Nek7 and Nek9 have been shown to function in
mitotic regulation. However, a more general theme that is
emerging for the function of many, and perhaps all, Neks
is the organization of microtubules. It is clear from the
discussion above that certain NIMA-related kinases from
different organisms regulate microtubules during mitosis.
What was not expected from early studies in the non-cili-
ated unicellular fungi, Aspergillus and fission yeast, was
that some Neks may also have important functions in
microtubule organization within cilia [76]. It is now
apparent that the biology of centrosomes, cilia and cell
cycle control are closely linked: in dividing cells, centro-
somes, which are composed of two barrel-shaped centri-
oles surrounded by pericentriolar material, organize the
cytoplasmic microtubule network and the mitotic spin-
dle; however, when cells stop dividing, the centrioles
migrate to the cell surface where they nucleate the micro-
tubules of the ciliary, or flagellar, axoneme [77]. In the lat-
ter context, centrioles are referred to as basal bodies.

The first suggestion of a Nek function in cilia emerged
from studies performed in ciliated unicellular eukaryotes,
namely Chlamydomonas and Tetrahymena. Chlamydomonas
is a biflagellate and encodes two Neks: Fa2p, which is
required for microtubule severing and deflagellation as
cells progress towards mitosis, and Cnk2p, which regu-
lates both flagellar length and cell size [78,79]. Tetrahy-
mena has hundreds of cilia, which fall into distinct classes
depending on their localization and length. Amazingly,
this organism has 39 nek genes and all of the encoded
proteins studied so far localize to cilia. Here, they may
determine individual cilia length, as overexpression of
wild-type kinases reduces cilia length while overexpres-
sion of kinase-inactive mutants increases cilia length [80].

Of the mammalian Neks, both Nek1 and Nek8 were unex-
pectedly implicated in cilia function when it was found
that mutations in laboratory mouse models of polycystic
kidney disease (PKD) mapped to the Nek1 and Nek8
genes [81,82]. PKD is a classic indication of an underlying
ciliopathy and so this discovery raised the prospect that
mammalian Neks may also have a role in microtubule
organization in cilia. Indeed, antisense Nek8 oligonucle-
otides induce pronephric cysts in Zebrafish with depletion
of Nek8 leading not to loss of cilia formation but to longer
cilia [81,83]. This is consistent with the role of Tetrahy-
mena Neks in regulating cilia length. Nek8 is localized to
the proximal region of the primary cilia, implying that

Nek8 could contribute to microtubule turnover at this end
of the ciliary axoneme [84].

Nek8, though, is most closely related to Nek9, which
clearly functions in mitosis, while overexpression of Nek1
has been reported to induce premature chromatin con-
densation in a manner not dissimilar to overexpression of
NIMA [85]. Furthermore, endogenous Nek1 localizes to
centrosomes in interphase and mitosis, and proteins
involved in the G2/M DNA damage checkpoint, as well as
microtubule-dependent transport and PKD, were identi-
fied as two hybrid partners of Nek1 [84,86]. Thus, there is
evidence in support of both cell cycle and ciliary functions
for these two Nek kinases. Pertinent to this review, cilia
are important signalling organelles that can influence the
state of proliferation of a cell [87]. Indeed, aberrant signal-
ling from defective cilia is likely to contribute to the over-
proliferation of kidney cells that lead to renal cyst
formation. Hence, an exciting possibility is that Nek
kinases act in signalling pathways that determine cell fate
with respect to differentiation and mitotic proliferation.

Future Perspectives
Protein kinases involved in cell cycle progression or
growth related signalling pathways make attractive targets
for the development of novel anti-cancer agents. Small
molecule inhibitors have already been identified in high
throughput screens against the Cdk1, Aurora A and B, and
Plk1 mitotic kinases and these are under further develop-
ment for potential clinical use [88]. As it now becomes
apparent that members of the human NIMA-related
kinase family also play important roles in mitotic progres-
sion, these will serve as a further rich source of potential
new targets [89]. Like Nek6, Nek2 is also upregulated in
various cancer cell lines, as well as primary breast tumours
[90-92], and the hope is that interfering with mitotic Neks
may arrest cell growth or promote apoptosis in a tumour-
specific manner. It will also be important to determine
whether specific inhibitors can be developed against the
different Nek kinases and which of these kinases makes
the most effective target. Clearly, the exploitation of these
kinases as novel drug targets requires a better understand-
ing of their basic biology than we have at the present time.
For example, it will be important to determine whether
Nek9, Nek6 or Nek7 regulates microtubule nucleation at
spindle poles through association or phosphorylation of
γ-tubulin-associated proteins, or whether they regulate
stability of spindle microtubules through a Ran-mediated
mechanism. In particular, further substrate identification
is key to unravelling the mitotic functions of Nek6, Nek7
and Nek9. Nevertheless, with their therapeutic potential
in mind, it would appear that NIMA-related kinases are at
long last stepping into the limelight.
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