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Abstract
Mitogenic induction of cyclin D1, the allosteric regulator of CDK4/6, is a key regulatory event
contributing to G1 phase progression. Following the G1/S transition, cyclin D1 activation is
antagonized by GSK3β-dependent threonine-286 (Thr-286) phosphorylation, triggering nuclear
export and subsequent cytoplasmic degradation mediated by the SCFFbx4-αBcrystallin E3 ubiquitin
ligase. Although cyclin D1 overexpression occurs in numerous malignancies, overexpression of
cyclin D1 alone is insufficient to drive transformation. In contrast, cyclin D1 mutants refractory to
phosphorylation-dependent nuclear export and degradation are acutely transforming. This raises
the question of whether overexpression of cyclin D1 is a significant contributor to tumorigenesis
or an effect of neoplastic transformation. Significantly, recent work strongly supports a model
wherein nuclear accumulation of cyclin D1-dependent kinase during S-phase is a critical event with
regard to transformation. The identification of mutations within SCFFbx4-αBcrystallin ligase in primary
tumors provides mechanistic insight into cyclin D1 accumulation in human cancer. Furthermore,
analysis of mouse models expressing cyclin D1 mutants refractory to degradation indicate that
nuclear cyclin D1/CDK4 kinase triggers DNA re-replication and genomic instability. Collectively,
these new findings provide a mechanism whereby aberrations in post-translational regulation of
cyclin D1 establish a cellular environment conducive to mutations that favor neoplastic growth.

Introduction
Mitogenic signalling induces transcription and translation
of the D-type cyclins, the allosteric regulators of CDK4/6,
during G1 phase coupling growth stimuli to cell cycle pro-
gression [1]. Active cyclin D1/CDK4 complexes translo-
cate to the nucleus and phosphorylate the retinoblastoma
protein (Rb) and related pocket proteins, thereby trigger-
ing E2F-dependent transcription of genes required for S-
phase entry [2-6]. The timely expression and accumula-
tion of cyclin D1 is ensured through several mechanisms.
Initially, cyclin D1 expression requires activation of the
Raf-Mek-Erk kinase cascade [7-10]. This increased expres-

sion is accompanied by phosphatidylinositol 3-kinase
and Akt-dependent increases in cyclin D1 translation and
decreased cyclin D1 protein degradation [11-13]. Follow-
ing the G1/S transition, cyclin D1 is rapidly phosphor-
ylated by GSK3β on Thr-286, triggering CRM1-dependent
nuclear export [13]. Thr-286 phosphorylated cyclin D1 is
recognized by Fbx4 and the co-factor αB crystallin and is
subsequently poly-ubiquitylated and degraded by the 26S
proteasome [14].

While cyclin D1 overexpression occurs frequently in
human cancer and is considered a causative factor in
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many tumor types, simple over-expression of wild type
cyclin D1 is insufficient to drive neoplastic transformation
[15]. In contrast, cyclin D1 mutants refractory to phos-
phorylation and subsequent cytoplasmic proteasomal
degradation are acutely transforming in vitro and in vivo
[15,16] implying that compartmentalization of cyclin D1
complexes is essential for cell homeostasis. Indeed, muta-
tions that directly impact on cyclin D1 nuclear export and
subsequent proteolysis have been identified in human
tumors [17,18]. However, the occurrence of such muta-
tions is rare compared to the frequency of cyclin D1 over-
expression. Implicit to this data, if cyclin D1 is a driver
oncogene, its overexpression in many cancers must be sec-
ondary to tumor-specific alterations that modify its sub-
cellular location during the cell cycle. Here, we discuss
recent work to address these questions.

Cancer-derived cyclin D1 mutations
Cyclin D1 overexpression occurs in carcinomas of the
breast, esophagus, head and neck, and lung; in a majority
of these cases, alterations in gene expression cannot
account for its overexpression. Perturbations in cyclin D1
degradation have been suggested as the primary contribu-
tor in a large percentage of cases. Indeed mutations that
interfere with Thr-286 phosphorylation occur, but are
rare. Such mutations have been noted in endometrial and
esophageal cancer [17,18]. For example, of single-base
substitutions in the CCND1 gene changing proline-287
(Pro-287) to a serine or threonine residue in endometri-
oid endometrial carcinoma correlates with overexpression
of cyclin D1 in the nucleus of neoplastic cells. Addition-
ally, a 12-base pair in frame deletion corresponding to
deletion of amino acids 289–292 was reported with over-
expression of cyclin D1 [17]. Significantly, subsequent
analyses revealed that disruption of Pro-287 abrogates
GSK3β-dependent phosphorylation of Thr-286, resulting
in nuclear localization of cyclin D1, and deletion of resi-
dues 289–292 impairs cyclin D1 binding to CRM1, also
resulting in nuclear accumulation [18,19].

In accordance with endometrial cancer studies, recently
identified cyclin D1 mutations in esophageal cancer and
tumor-derived cell lines also disrupt Thr-286 phosphor-
ylation [18]. Sequencing of cyclin D1 (CCND1) in a panel
of 90 patient esophageal carcinomas revealed mutation of
Thr-286 to arginine and a deletion of C-terminal residues
266–295. Additionally, screening of human tumor-
derived esophageal carcinoma cell lines also identified a
Pro-287 to alanine mutation in three of these lines [18].

Alternative splicing may also contribute to cancer specific
accumulation of cyclin D1 proteins that cannot undergo
cytoplasmic degradation [20]. Tumor-specific alternative
splicing produces a truncated transcript lacking exon 5,
the region encoding the C-terminal Thr-286; this cyclin

D1 transcript b (D1b) produces a constitutively nuclear
protein refractory to proteasomal degradation [21]. Cur-
rent work suggests that D1b may be expressed in up to
40% of primary esophageal carcinomas [21]. While cyclin
D1b stability is only moderately increased relative to wild
type protein, it is refractory to nuclear export and there-
fore exhibits constitutively nuclear localization. As might
be anticipated, expression of cyclin D1b promotes neo-
plastic transformation in vitro, much like the phosphor-
ylation-deficient T286A mutant [15,21]. It is currently
unclear what determines alterations in cyclin D1 splicing;
polymorphisms that occur in the splice-donor site at the
exon 4/intron boundary have been implicated. However,
cyclin D1b has been detected in cells that do not exhibit
polymorphic residues implicating the occurrence of alter-
native mechanisms [21].

Disruption of SCFFbx4-αBcrystallin function: novel insights into 
cyclin D1 overexpression
Cell cycle progression is driven by alternating phases of
cyclin expression and destruction. Degradation is coordi-
nated by substrate ubiquitylation and destruction via the
26S proteasome [22,23]. Poly-ubiquitylation of substrate
proteins is catalyzed by the sequential activity of a ubiqui-
tin activating enzyme (E1), ubiquitin conjugating enzyme
(E2), and ubiquitin ligase (E3) [24]. The Skp1-Cul1-F box
(SCF) E3 ubiquitin ligases facilitate polyubiquitylation of
phosphorylated substrates; among the substrates are
many of the key regulators of G1 progression [25]. We
recently identified the E3 ubiquitin ligase that directs
phosphorylation-dependent polyubiquitylation of cyclin
D1, SCFFbx4-αB crystallin [14]. Substrate recognition by this
ligase is analogous with Skp2/Cks1 in that it is directed by
the F box protein Fbx4 in concert with a cofactor, αB crys-
tallin [14].

Given the low frequency of mutations within cyclin D1
that directly impact is turnover, a logical prediction was
the occurrence of inactivating mutations in its E3 ligase.
The first clue to cyclin D1 ligase involvement came from
analysis of several breast cancer cell lines exhibiting
increased cyclin D1 half-life without mutations disrupting
phosphorylation. These analyses revealed that MCF-7 and
MDA-MB-231 cells lack αB crystallin expression as a con-
sequence of chromosome deletions. In addition, tumor
microarray analysis of esophageal carcinomas revealed a
reduction in both αB crystallin and Fbx4 mRNA levels in
tumor tissues [14]. Collectively, these findings implicated
the cyclin D1 ligase as a target in tumorigenesis, with pro-
teins such as αB crystallin or Fbx4 functioning as putative
tumor suppressors.

Significantly, recent assessment of the Fbx4 sequence in
primary esophageal carcinoma samples identified
hemizygous, missense mutations in 14 percent of the
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tumors; no mutations occurred in αB crystallin or CCND1
genes in tumors expressing mutated Fbx4. A high percent-
age of mutations reside within a putative Fbx4 dimeriza-
tion domain, while others target Ser-12 in the N-terminus.
Additionally, one mutation identified within the F box
domain results in production of a dominant negative pro-
tein incapable of recruiting Skp1 and Cul1[26]. The resi-
dues targeted in cancer suggest a model wherein Fbx4 is
phosphorylated on Ser-12 and functions as a dimer.
While substrate phosphorylation serves as a critical step in
regulating SCF ligase function, several studies indicated
that F box proteins such as Fbw7 and β-TrCP can form
dimers, potentially regulating ligase activity [27-30].

Further analysis of the cyclin D1 ligase revealed that
GSK3β, the kinase responsible for cyclin D1 Thr-286
phosphorylation, also catalyzes phosphorylation of Fbx4
Ser-12. Fbx4 phosphorylation correlates with low cyclin
D1 expression during G2/M and early G1, with a marked
decrease during cell cycle entry due to growth factor-
dependent GSK3β inhibition [11]. Fbx4 phosphorylation
increases again at the G1/S boundary as GSK3β becomes
active and temporally controls ligase activation and cyclin
D1 phosphorylation. These findings raise the question of
how Fbx4 phosphorylation regulates ligase function.
Additional work demonstrated that Fbx4 forms
homodimers in a phosphorylation- and cell cycle-
dependent manner [26]. Fbx4 homodimerization is
dependent on Ser-12 phosphorylation; disruption of this
residue impairs the ubiquitylation activity of this ligase
[26].

The tumorigenic potential of Fbx4 mutations disrupting
phosphorylation and dimerization was assessed in vitro,
revealing that such mutations are indeed transforming
[26]. These findings suggest that mutation of Ser-12 or res-
idues within the Fbx4 dimerization domain impairs ligase

function, contributing to cyclin D1 accumulation. Studies
over the past several years have identified mutations in
both cyclin D1 and its E3 ubiquitin ligase that impair pro-
teasomal degradation and promote nuclear accumulation
of cyclin D1/CDK4 complexes (summarized in Table 1).
Therefore, delineating the mechanism underlying nuclear
cyclin D1-driven transformation is critical for understand-
ing the role of cyclin D1 in tumorigenesis and develop-
ment of therapeutic strategies for treatment of cancers
overexpressing this protein.

Inhibition of cyclin D1 degradation promotes genomic 
instability
Aberrant nuclear accumulation of cyclin D1 during S-
phase drives cell transformation in vitro and B-cell lym-
phomagenesis in mice [15,16]. Recent evidence links
nuclear retention of active cyclin D1/CDK4 complexes
with genomic instability, providing a novel mechanism
wherein cyclin D1 stabilization initiates tumor formation.
Nuclear accumulation of active cyclin D1-dependent
kinase was found to interfere with Cdt1 proteolysis [31].
Cdt1 is a component of the pre-replicative complex that
promotes loading of the replicative helicase during late
G1 phase [32,33]. The failure to degrade Cdt1 during S-
phase has been shown to contribute to DNA re-replication
in several systems [34,35]. In cells harbouring nuclear cyc-
lin D1, Cdt1 proteolysis was disrupted due to repression
of Cul4A and Cul4B expression. Cul4 proteins serve as
scaffolds for the E3 ligase that regulates Cdt1 [36,37]. Ulti-
mately, nuclear cyclin D1/CDK4 complexes facilitate sta-
bilization of Cdt1 during S-phase, with concurrent
maintenance of the MCM helicase on chromatin, result-
ing in DNA re-replication and activation of DNA damage
checkpoint signalling [31].

Active cyclin D1/CDK4 complexes influence transcrip-
tional regulation of the Cul4 proteins; however, the pre-

Table 1: Summary of mutations targeting cyclin D1 phosphorylation or ligase function

Target Mutation Consequence Tumor Type Reference

Cyclin D1 T286R Constitutively Nuclear Esophageal [18]
Cyclin D1 Δ266–295 Constitutively Nuclear Esophageal [18]
Cyclin D1 P287A Constitutively Nuclear Tumor-derived esophageal carcinoma cell lines TE3, TE7, and 

TE12
[18]

Cyclin D1 P287S/T Constitutively Nuclear Endometrial [17]
Cyclin D1 Δ289–292 Constitutively Nuclear Endometrial [17]
αB crystallin Chromosome 11 deletion Impaired ligase activity Tumor-derived breast cancer cell lines (MCF-7, MDA-MB 231) [14]
Fbx4 S8R Impaired ligase activity Esophageal [26]
Fbx4 S12L Disrupts phosphorylation Esophageal [26]
Fbx4 P13S Disrupts phosphorylation Esophageal [26]
Fbx4 L23Q Dimerization-deficient Esophageal [26]
Fbx4 P76T Impaired Skp1 binding Esophageal [26]

Mutations disrupting GSK3β-dependent cyclin D1 phosphorylation and nuclear export include mutation of Thr-286, Pro-287, and deletion of 
residues corresponding to the CRM1 binding site. Mutations targeting the SCFFbx4-αB crystallin E3 ubiquitin ligase result in impaired ligase activity and 
subsequent cyclin D1/CDK4 accumulation in the nucleus.
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cise mechanism of regulation remains to be elucidated.
Strikingly, impaired cyclin D1 ligase function results in
nuclear accumulation of active cyclin D1/CDK4 com-
plexes, accumulation of Cdt1, and triggers cellular trans-
formation analogous to cyclin D1 T286A [26]. Taken
together, data elucidating the role of nuclear cyclin D1 in
neoplastic transformation support a model wherein dis-
ruption of cyclin D1 phosphorylation or SCFFbx4-αBcrystallin

activation generate genomic instability, ultimately driving
tumor formation (Figure 1).

Genomic integrity is monitored by cell cycle checkpoints
that promote cell cycle arrest or apoptosis upon detection

of damaged DNA [38]. Chronic activation of checkpoints
may provide selective pressure for deletion or mutation of
critical tumor suppressors such as p53 [39,40]. Consistent
with this notion, cyclin D1T286A-dependent tumorigene-
sis is accompanied by activation of the DNA damage
checkpoint pathway and loss of p53 [31]. The deleterious
effects of nuclear cyclin D1/CDK4 complexes could then
have two different effects on cellular transformation.
Chronic checkpoint activation can induce selective pres-
sure for loss of tumor suppressors, thereby providing such
cells not only with a growth advantage but also the pro-
pensity for additional genomic instability.

Cyclin D1 Regulatory Pathways are Targeted in Human CancerFigure 1
Cyclin D1 Regulatory Pathways are Targeted in Human Cancer. Cyclin D1 protein accumulation is tightly controlled 
via phosphorylation-dependent proteolysis. Mutations targeting cyclin D1 phosphorylation or degradation contribute to neo-
plastic transformation. Specific disruption of Thr-286 phosphorylation occurs in endometrial and esophageal carcinoma, while 
mutations preventing Crm1 binding occur in endometrial cancer. Mutations targeting Fbx4 have been identified in esophageal 
cancer, and αB crystallin loss occurs in tumor-derived breast carcioma cell lines. Disruption of cyclin D1 proteolysis promotes 
accumulation of active cyclin D1/CDK4 kinase, triggering DNA re-replication and subsequent genomic instability necessary to 
drive neoplastic transformation.
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Cyclin D1 protein accumulation in tumors: potential 
therapeutic strategies
Provided with this new data suggesting that cyclin D1-
dependent kinase contributes to neoplasia at least in part
through perturbations in DNA replication and loss of
genomic integrity, can we utilize this information for
increased therapeutic modalities? One scenario might be
to take advantage of the fact that tumors harbouring
mutations in cyclin D1 or Fbx4 have a compromised DNA
damage checkpoint due to loss of p53. In theory, treat-
ment of normal cells with chemotherapeutic agents that
generate DNA crosslinks should trigger an intra S-phase
checkpoint, thereby providing an opportunity for repair.
Expression of stabilized cyclin D1 should promote main-
tenance of Cdt1 and MCM complexes and in so doing
promote continued origin firing without allowing for
repair of damaged DNA, ultimately resulting in mitotic
catastrophe. Further work is required to investigate how
alterations in cyclin D1 proteolysis might influence cellu-
lar responses to DNA damaging therapeutics.

The alternative is the development of drugs that directly
target the kinase subunits that cyclin D1 regulates. If con-
tinued activation of CDK4/6 is required for tumor prolif-
eration and survival, such drugs may have significant
clinical use. Consistent with this notion of oncogene
addiction, treatment of mammary epithelial cells derived
from murine tumors harbouring a MMTV-T286A trans-
gene with the CDK4/6 inhibitor PD0332991 [41] trig-
gered G1 arrest [42]. Therefore, CDK4/6 activity is a
potential target to prevent cyclin D1-driven proliferation.

Concluding Remarks
Phosphorylation-dependent nuclear export and subse-
quent degradation of cyclin D1 is essential to maintain
cellular homeostasis. Disruption of this regulatory path-
way has been extensively shown to promote neoplastic
transformation; however, the precise mechanism of this
event has been elusive. Significantly, recent work revealed
that nuclear accumulation of active cyclin D1/CDK4 com-
plexes generates genomic instability through a mecha-
nism of Cdt1 stabilization and DNA re-replication.
Furthermore, mutations targeting SCFFbx4-αB crystallin in
human cancers implicate ligase function in cyclin D1
overexpression and subsequent nuclear accumulation of
active cyclin D1/CDK4 complexes. Importantly, GSK3β
functions as the master switch, turning on cyclin D1
destruction at the G1/S transition by regulating both
ligase activation and cyclin D1 phosphorylation. Given
the phenotypic outcome of accumulated nuclear cyclin
D1/CDK4 complexes, further mechanistic investigation is
required for development of novel therapeutic strategies
to promote tumor cell death in cancers overexpressing
cyclin D1.
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