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Abstract

Background: [14-3-3 proteins are a family of adaptor proteins that participate in a wide variety of
cellular processes. Recent evidence indicates that the expression levels of these proteins are
elevated in some human tumors providing circumstantial evidence for their involvement in human
cancers. However, the mechanism through which these proteins act in tumorigenesis is uncertain.

Results: To determine whether elevated levels of 14-3-3 proteins may perturb cell growth we
overexpressed human 14-3-3 gamma (h14-3-3 gamma) in Drosophila larvae using the heat shock
promoter or the GMR-Gal4 driver and then examined the effect that this had on cell proliferation
in the eye imaginal discs of third instar larvae. We found that induction of h14-3-3 gamma resulted
in the abnormal appearance of replicating cells in the differentiating proneural photoreceptor cells
of eye imaginal discs where h14-3-3 gamma was driven by the heat shock promoter. Similarly, we
found that driving h14-3-3 gamma expression specifically in developing eye discs with the GMR-Gal4
driver resulted in increased numbers of replicative cells following the morphogenetic furrow.
Interestingly, we found that the effects of overexpressing h1433 gamma on eye development were
increased in a genetic background where String (cdc25) function was compromised.

Conclusion: Taken together our results indicate that h14-3-3 gamma can promote abnormal cell
proliferation and may act through Cdc25. This has important implications for 14-3-3 gamma as an
oncogene as it suggests that elevated levels of 14-3-3 may confer a growth advantage to cells that
overexpress it.

Background are seven family members and each is designated with a
The 14-3-3 proteins are found abundantly in cytoplasm of ~ Greek letter (¢, v, 1, o, 8/1). Phosphorylated isoforms of 8
brain neuronal cells [1,2] and are highly conserved in  and (, respectively, are known as and & [7]. All 14-3-3
organisms as diverse as yeast, Drosophila, and humans  family members have been shown to function in various
[3,4]. Only two isoforms, ¢ and { are expressed in Dro-  aspects of crucial cellular processes including cell cycling
sophila [4] and yeast [5,6]. However, in mammals, there
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regulation [8,9], apoptosis [10,11], transcriptional regula-
tion [12,13] and Ras/Raf signaling [14].

The diversity of activities in which 14-3-3 proteins act is
due to their ability to interact with a wide variety of sign-
aling molecules through a variety of consensus motifs that
typically consist of a phosphoserine residue flanked by an
arginine and proline such as RXY(F)XpS(pT)XP and
RSxpS(pT)xP (x stands for any amino acid, and pS refers
to phosphorylated Serine), but may also bind to motifs
that are serine-rich or to apparently unrelated motifs such
as GHSL and WLDLE [3,15]. An added complexity is that
14-3-3s form thermodynamically stable dimers and each
family member has a distinct preference for formation of
either homo- or hetero-dimers providing a diversity of
architectures for protein interactions [6]. For instance the
y protein forms homodimers as well as having a het-
erodimeric formation with the ¢ protein [6]. Conversely,
the ¢ protein does not homodimerize, and instead prefers
to heterodimerizes with other family members (n, B, v, €)
[6]. As a consequence, 14-3-3 proteins can regulate and/or
influence the activity of a wide variety of proteins which
accounts for their involvement in such a wide range of
normal cellular processes.

Perhaps the best characterized cellular process that 14-3-3
is involved in is the ability to regulate cell cycle progres-
sion [16]. Detailed studies in yeast show that 14-3-3 binds
to the key cell cycle regulator, Cdc25, in response to DNA
damage which leads to Cdc25 being exported from the
nucleus [17]. This checkpoint activation results in cells
halting their entry into mitosis which facilitates the repair
of DNA damage [17]. 14-3-3 proteins € and y play a simi-
lar role in regulating G2/M progression in humans
[9,16,18]. Moreover, 14-3-3( was also shown to bind with
Cdc25C in A549 lung cancer cells after irradiation [19].
Collectively, these studies show that 14-3-3 proteins play
a role in maintaining genomic integrity.

The involvement of 14-3-3 proteins in cellular process
that may be relevant to their role in human cancer is not
limited to regulation of cell cycle checkpoints nor are ¢
and ¢ the only family members that could have a role in
tumorigeneis. For instance, exogenous expression of 14-3-
3B increases proliferation of NIH3T3 cells and confers the
ability to grow in soft agar [20]. 14-3-360 was shown to
induce the expression of tenascin-C (overexpressed in
most solid tumors) which increase cell adhesion of mam-
malian MCF-7 carcinoma cells on a substratum [21].
Moreover, the expression levels of most 14-3-3s are ele-
vated in lung and other cancers suggesting that they confer
a growth advantage to neoplastic cells [22].

In these studies we chose to focus on the 14-3-3y protein
because we found that this family member was consist-
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ently upregulated in human lung cancers and when intro-
duced into H322 lung cancer «cells caused
polyploidization suggesting that it might have potential
oncogenicity [22,23]. Because flies have two 14-3-3 pro-
teins that act on the same signaling pathways and cellular
processes in human cells that are involved in carcinogen-
esis we chose Drosophila for our model system [4,24-27].
Consequently we utilized this genetically tractable model
organism to examine the effect that targeted overexpres-
sion of h14-3-3y had on cell cycling in the developing eye
and found that 14-3-3y stimulated abnormal cell prolifer-
ation in neuronal cells of the differentiating eye imaginal
discs. We also examined genetic interactions between
String (Drosophila Cdc25C homolog) and h14-3-3y in
terms of cell cycling regulation in fly eyes.

Results

Overexpression of human 14-3-3y leads to abnormal cell
proliferation in differentiating eye imaginal discs

To determine the role of human 14-3-3y (h14-3-3y) in cell
cycle regulation, we generated transgenic flies with h14-3-
3y cDNA inserted into a P-element vector and driven by a
heat shock promoter. The h14-3-3y transgene copy
number was increased by crossing two independent lines
as described in the Methods section to generate the
HS1433GA/GC line. We first examined the HS1433GA/GC
line for molecular evidence of h1433y expression by per-
forming RT-PCR and Western analyses (Figure 1). The
transgenic line HS1433GA/GC showed h14-3-3y mRNA
expression when heat shock was applied to third instar
larvae. Applying the heat shock treatment two times pro-
duced the most abundant expression of h14-3-3y (Figure
1A; Lanes 3-5). No h14-3-3y mRNA was observed in the
parental yw¢7C2 animals (Figure 1A; Lane 1). However, we
did observe faint expression of h14-3-3y in those trans-
genic lines without a heat-shock treatment which we
interpreted as expression due to leakiness of the heat
shock promoter which has also been observed by others
[28].

We next optimized the conditions used for induction of
h14-3-3y protein. We found that a one hour heat shock
treatment consistently resulted in robust induction of
h14-3-3y protein, whereas with a 30 minute heat-shock
the amount of protein expressed was weak (Figures 1B
&1C). Importantly, heat shock had no effect on expres-
sion of the endogenous Drosophila € and { 14-3-3 genes
(data not shown). Recovery time was also an important
determinant for maximizing the h14-3-3y protein expres-
sion. We found that h14-3-3y protein expression was most
highly elevated 1-3 hours after a one hour heat shock
treatment (Figures 1B; Lane 6 &1C; Lanes 4-5). Neither
the exogenous h14-3-3y protein nor endogenous 14-3-3
protein could be detected in the control flies. This may be
caused by the fact that only human 14-3-3y protein could
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Overexpression of human 14-3-3y in Drosophila using
the Hsp70 promoter. (A) Third instar larvae harboring the
human [4-3-3y driven by the heat shock inducible Hsp70
promoter were collected after incubating at 37°C for one
hour and the heat shock applied either once or multiple
times as indicated in the figure. Total RNA was extracted and
RT-PCR conducted using primers specific for the human [4-
3-3y RNA and the PCR products electrophoresed on agar-
ose gels. Yw, ywt7C2, was used as a control. The experiment
was repeated three times. Third instar larvae with the Hsp70
promoter driven human 14-3-3y were collected after heat
shocking at 37°C and allowed to recover as indicated in the
figure. Total proteins were extracted and immunoblotted for
presence of the human 14-3-3y protein using a pan-specific
anti-14-3-3 antibody (B and C). 3-tubulin was used as loading
controls in B) and C). The abbreviations depict the following:
A) HS, heat-shock treatment; yw, ywt7<2 (control); h1433GA/
GC, human [4-3-3 transgenic animals (h14-3-3A+C); | x
(heat-shocked once); 2% (heat-shocked twice); 3% (heat-
shocked third time); h1433y, human [4-3-3y primers; rp49, a
loading control (Drosophila ribosomal protein encoding
gene); RT, recovery time.

be detected in the transgenic line by using a pan-specific
14-3-3 antibody, which was raised against human 14-3-3f3
protein (Figure 1). Since the levels of h14-3-3y protein
declined to near background 4.5 hours after treatment
(Figure 1C; Lane 5) all animals exposed to heat shock
were examined within 1-3 hours after treatment.

H14-3-3y stimulates abnormal cell proliferation in eye
imaginal discs

In human lung cancer cell lines, h14-3-3y may interfere
with normal cell cycle progression [23]. To determine
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whether overexpression of 14-3-3y had any effect on cell
proliferation we examined the differentiating neuronal
cells in the posterior compartment of the developing eyes
in HS1433GA/GC larvae that had been heat shocked.
BrdU incorporation was used to identify S-phase cells and
immunostaining with anti-Elav antibody marked differ-
entiating neuronal cells. We found BrdU-incorporated
cells in the anti-Elav (neuronal cell marker) staining posi-
tive regions in HS1433GA/GC imaginal discs after a heat
shock treatment (Figure 2C). No replicative cells were
seen in the Elav-staining regions of eye discs from animals
that were not heat shocked or in the control animals (Fig-
ures 2A &2B). The number of replicative cells, determined
through BrdU incorporation, in the anti-Elav positive
region was quantitated in control and transgenics and the
results presented in Table 1. The measurements showed
that the average number of S phase cells in the Elav posi-
tive region of HS1433GA/GC imaginal discs increased sig-
nificantly when the larvae were heat shocked compared to
animals from the same line but not heat shocked. There
was small increase in BrdU-incorporating cells in HS-
h1433y discs without heat shock compared to yw®7¢2 con-
trol flies. This is probably due to leakiness of the Hsp70
promoter (Figure 1A; Lane2). Our data shows that overex-
pression of h14-3-3y promotes abnormal cell prolifera-
tion in differentiating tissue and that the effect is dose
dependent.

H14-3-3y protein controls S phase cell prolongation

Our experiments with the Hsp70 promoter-driven h14-3-
3y gene suggested that the overexpression of the 14-3-3y
resulted in aberrant cellular proliferation. To confirm our
results we made additional flies in which h14-3-3y expres-
sion was specifically targeted to behind of the morphoge-
netic furrow of posterior compartment of 3r-instar eye
imaginal discs using a GMR (Glass Multiple Reporter)-Gal4
[29] driver. Transgenic UAS-h1433 vy (on 2nd chromosome,
#15D) flies were created as described in the Methods sec-
tion. Crossing Gal4 flies with UAS-h1433 y flies induced
expression of h1433y in eye imaginal discs.

To mark the compartment posterior to the morphogenetic
furrow in the 3rd-instar larval eye imaginal discs a GFP
(Green Fluorescent Protein) reporter gene was introduced
which also responded to the GMR-Gal4 driver. To induce
expression of h14-3-3y, females containing the GMR-Gal4
driver carrying with h14-3-3y were crossed with male
UAS-GFP flies (see Methods section) to create the yw;
GMR-Gal4, UAS-h1433y/UAS-GFP genotype. We first con-
firmed that h14-3-3y expression was occurring using RT-
PCR and Western blotting to detect expression (Figure 3).
A PCR product of the predicted size of human 14-3-3y
mRNA was detected in these larvae indicating the pres-
ence of human 14-3-3y mRNA (Figure 3A; Lane 2), and no
product was detected in the control (Figure 3A; Lane 1).
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Table I: Frequency of BrdU incorporation in the posterior region of morphogenetic furrow in h14-3-3y transgenic lines

Flies bearing transgene h14-3-3y* Heat-shock induction

Numbers of cells in Numbers of eye imaginal discs

of transgene "S" phase observed

None (Control)

- HS NO 4.14 (+ 1.03) 8

+ HS NO 829 (£ 3.11) 8
h14-3-3y

- HS NO 9.90 (+ 1.92) Il

+ HS YES 11.0 (£ 5.69) 3
Both HS1433GA & HS1433GC

-HS NO 8.0 (x 1.91) 10

+ HS YES 20.5 (£ 2.32)2 Il

- HS (without a heat-shock treatment)

+ HS (with | hr heat-shock and | hr recovery time)

* HS1433GA — on X-chromosome, homozygous or hemizygous
HS1433GC — on 314 chromosome, homozygous

a p-value of 0.006 when compared with controls

Moreover, examination of h14-3-3y protein levels showed
that the exogenous human protein was expressed in the
yw; GMR-Gal4, UAS-h1433y/UAS-nlsGFP transgenics (Fig-
ure 3B; Lane 2), and not in the controls.

We next examined the eye imaginal discs of yw; GMR-
Gal4, UAS-h1433y/UAS-nlsGFP 3t - instar larvae. As in
the previous experiments, BrdU incorporation was used to
detect replicating cells. GFP expression marked activity of
the GMR-Gal4 driver (Figure 4). In Figure 4 panels b and
e, which depict BrdU incorporation, the replicating cells
marking the second mitotic wave are clearly visible as a
band of cells laid out across the center of the imaginal
disc. Notably, the apparent width of the SMW is greater in
eye discs from flies expressing h14-3-3y Figure 4B, f). This
suggested that there is an increase in the(number of repli-
cating cells within this region. Consistent with this, com-
parison of the merged images (which showed the
relationship between the replicating cells in the second
mitotic wave and GFP expression) indicates that replica-
tion ceases prior to the onset of GFP expression in control
flies (Figure 4A). In contrast, GFP expression invades the
band of replicating cells of the second mitotic wave in
h14-3-3y expressing animals (Figures. 4B, d-f). Taken
together, these data suggest that h14-3-3y overexpression
may increase the number of proliferative cells or prolong
the proliferative phase of cells in the developing fly eye
resulting in a wider and more intense band of BrdU incor-
porating cells.

We and others have suggested that 14-3-3 proteins may
regulate entrance into mitosis by regulating activity of the
Cdc25 phosphatase [17,30], Hence, we sought to deter-
mine whether the h14-3-3y expression had any effect on
the onset of mitosis. Consequently we examined the
occurrence of mitosis in eye imaginal discs of flies express-
ing GMR-Gal4-driven h14-3-3y. Eye imaginal discs were

collected from third instar larvae and immunostained for
phospho histone H3 (PH3) and the samples examined
using confocal microscopy to detect PH3 and GFP (Figure
5). As can be seen mitotic cells are apparent near the mor-
phogenetic furrow of eye imaginal discs from control ani-
mals (Figure 5A, b), but that this band of mitotic cells is
markedly reduced in eye discs where h14-3-3y is overex-
pressed (Figure 5B, e). This suggests that h14-3-3y can
suppress entrance into mitosis in a manner similar to that
observed in animal cells [30].

To further examine the mechanism of h14-3-3y activity we
decided to overexpress h14-3-3y in a genetic background
with compromised Cdc25 (String). To this end, we intro-
duced the heat shock inducible h14-3-3y gene into a
genetic background containing the String hypomorphic
allele, Stg®4 and then induced h14-3-3y using the heat
shock protocol described previously [31]. In the double
mutant we found 8.96% (SEM: + 1.27, 21 out of total 257
flies) of adult eyes had a rough eye phenotype (Table 2).
However, in the absence of Stg4 we found only 1.61%
(SEM: £ 1.03, 2 out of total 211 flies) displaying the phe-
notype. By comparison only 1.39% (3 out of total 191
flies) of the parental background (yw©®7¢2) flies showed the
rough eye phenotype. Hence, presence of the hypomor-
phic String allele appears to increase sensitivity to the
effects of h14-3-3y suggesting that h14-3-3y may interact
with Cdc25 in cell cycle regulation.

Discussion

Collectively our results suggest that overexpression of
human 14-3-3y leads to the abnormal appearance of rep-
licating cells in eye imaginal discs where such cells would
normally not appear. Although the effect was modest, the
appearance of abnormally proliferative cells was repro-
ducible when h14-3-3y gene copy number was increased.
It is unclear why the effect of h14-3-3y overexpression was
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B) h1433
GA/GC
W/O HS

C) h1433
GA/GC
(1hr HS
1hr RT)

Figure 2

Human 14-3-3y stimulates abnormal proliferation in
eye imaginal discs. Third instar larvae were either heat
shocked as indicated or left untreated and the eye imaginal
discs dissected and processed to incorporate BrdU as
described in the methods section. A mouse anti-BrdU mono-
clonal antibody was used to detect BrdU-labeled cells. An
anti-Elav antibody was used to stain differentiating proneural
photoreceptor cells in the region posterior to the morpho-
genetic furrow. Confocal images are depicted. BrdU incorpo-
ration marks replicating cells (BrdU), Elav expression signifies
differentiated proneuronal cells (Elav). Merged images show
the relative placement of replicating cells relative to differen-
tiating cells (Merged). In photomicrograph "a" the letter A
marks the anterior region of the eye disc. The letter P marks
the posterior region of the disc. In photomicrograph "g" a
white arrow points to replicating cells in the posterior com-
partment of the eye imaginal disc. The letter P marks the
posterior compartment of the disc. In photomicrograph i
"MF" marks the morphogenetic furrow (the white bar). In "J"
and "K" panels, BrdU-incorporated "S" phase cells were
shown (white arrows) in the 2nd mitotic wave region ("]")
behind of morphogenetic furrow and in the differentiating
proneuronal cell region ("K"), respectively. In photomicro-
graph"l", a combined image of anti-BrdU and anti-elav stained
cells is shown. The white scale bars, on the right top corners
in the photomicrographs "J" and "K", show 20 um.

slight. One possibility is that h14-3-3y, which likely
evolved from the other isoforms, has only partially over-
lapping functions with the endogenous 14-3-3y. In any
case, overexpression of h14-3-3y resulted in replicating
cells appearing amongst differentiated neuronal cells pos-
terior to the morphogenetic furrow in eye imaginal discs.
These BrdU-incorporating cells could result from h14-3-

http://www.celldiv.com/content/3/1/2

—

S L
1 2

Figure 3

Overexpression of human 14-3-3y mRNA in Dro-
sophila eye tissue using the GMR-Gal4 driver. (A)
Third instar larvae imaginal discs were collected and total
RNA isolated. Human 14-3-3y specific primers were used for
RT-PCR to amplify human 14-3-3y. PCR products were elec-
rophoresed on agarose gels and bands detected by ethidium
bromide staining. Drosophila rp49 (coding for Drosophila
ribosomal protein 49) was used as a loading control for RT-
PCR. (B) Imaginal discs were collected as in A and total pro-
tein extracted. Immunoblotting was used to detect |4-3-3y
protein using a pan-specific anti-14-3-3 antibody. Beta-actin
was utilized as a loading control. GMRG refers to the con-
trol, GMR-Gal4 driver only (lanes I) and A5.1 strain has the
GMR-GAL4 driven human 14-3-3y cDNA (Lanes 2).

3y causing differentiated cells to become abnormally rep-
licative or because h14-3-3y causes replicative cells to
remain in the replicative phase for a prolonged period. We
favor the latter hypothesis. Progression of the morphoge-
netic furrow through the undifferentiated eye disc is pre-
cisely regulated. The number of replicating cells that arise
in the wake of the morphogenetic furrow is tightly con-
trolled and is typically about two cells deep. However, in
the eye imaginal discs of flies where h14-3-3y is driven by
GMR-Gal4 the width of the band of proliferative cells is
increased to between 3-4 cells. Concomitantly, we
showed that h14-3-3y suppressed the appearance of
mitotic cells in the eye discs of these same flies. This is
consistent with data from our lab and with what has been
shown for another 14-3-3 family member 14-3-3c [32]
and could indicate that 14-3-3y is involved in the process
that prolonging replicative phase of cells delay entry into
mitosis. Indeed, in previous studies we showed that 14-3-
3y caused cells to reenter S phase when overexpressed in a
lung cancer cell line [23].
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A) GMR-Gal4/UAS-
nIsGFP

B) GMR-Gal4, UAS-
h1433y/UAS-nIsGFP|

Figure 4

Human 14-3-3y induces increased cell proliferation in
the morphogenetic furrow region of eye imaginal
discs. Third instar larvae were collected and processed for
incorporation of BrdU as described previously and the imagi-
nal discs dissected and examined using confocal microscopy.
GFP expression (GFP) is shown in green and is due to the
presence of UAS-nIsGFP. BrdU incorporation (BrdU) is shown
in red. Merged images are shown on the right. (A) Shows
control animals (w; GMR-Gal4/UAS-nIsGFP). (B) Shows imagi-
nal disc from transgenic line (yw; GMR-Gal4, UAS-h 1433 y/UAS-
nlsGFP). In photomicrograph "b" the letter P marks the poste-
rior side of the imaginal disc and the letter A marks the ante-
rior side. In photomicrographs "b" and "e" white rectangular
boxes mark the position of the second mitotic wave. MF (the
white bars, "f" and "h") marks morphogenetic furrow. The
letter S (the white arrow) in photomicrograph "g", refers to
cells in "S" phase. The letter P marks posterior compartment
of the eye disc ("h"). The size of white scale bars on the top
right corners in photomicrographs "g" and "h" is 20 um.

Conclusion

The primary conclusion from these studies is that h14-3-
3y leads to abnormal cell proliferation when overex-
pressed and that proliferation is evident even after the tis-
sue has become differentiated. This has important
implications for h14-3-3y as an oncogene as it suggests
that elevated levels of the protein can interfere with nor-
mal cell cycle progression.

Methods

Generation of transgenic fly stocks and genetic crosses
Transgenic flies, yw; UAS-h1433yand hs-h1433ylines were
generated using a cloned human 14-3-3y cDNA [23] into
P-element vectors such as pUASP [33] and pCaSpeR-hs
[34], respectively.

For ubiquitous h14-3-3y protein expression, we generated
two transgenic lines that express gamma using a P-ele-
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A) GMR-Gal4/UAS-
nisGFP

B) GMR-Gal4,
UAS-h1433y/UAS-
nisGFP

Figure 5

Human 14-3-3y suppresses appearance of mitotic
cells in Drosophila eye imaginal discs. Eye imaginal discs
from third instar larva from either control (A) or transgenic
(B) flies were collected and stained with an anti-Phospho-
Histone H3 (PH3) antibody which detects mitotic cells. GFP
expression due to the presence of UAS-nIsGFP is shown in
green. Phospho-Histone H3 staining is shown in red. Merged
images are shown at the right. In photomicrograph "b" a
white arrow points to a typical mitotic cell and in "b" and "e"
white rectangular boxes mark the morphogenetic furrow and
the second mitotic wave. In photomicrograph "c" the posi-
tion the letter A marks the anterior portion of the eye disc
and the letter P marks the posterior region. In "e" panel,
SMW refers to second mitotic wave. The white arrows with
the letters M ("f" and "g") depict mitotic cells. The letter P in
photomicrograph "h" marks the posterior compartment of
the eye disc. The white scales at the bottom right corners in

g" and "h" panels show 20 pum.

ment vector in which the h14-3-3y gene was driven by the
Hsp70 heat shock promoter and could be activated by
heat shock. Two independent lines were generated,
HS1433GA (on X chromosome) and HS1433GC (on 3
chromosome). To increase gene copies (more than 2) of
h14-3-3y progeny, these flies were crossed with each other
and selected using eye color as a marker for gene dosage.
A stock homozygous for 14-3-3y on the X and 314 chromo-
some was established from this cross and has remained
stable for an extended period of time.

Stock flies with GMR-Gal4 driver were crossed with 8 UAS-
h14-3-3y transgenic lines for initial screening, and we
found all lines to be similar. For the experiments in this
study, male flies of h14-3-3y on the 2nd chromosome
(P33#15D) were crossed with GMR-Gal4 (on 2nd chromo-
some) female flies to generate recombinant flies for the
experiments and scored for eye phenotype. Recombinant
flies bearing both UAS-h14-3-3y and GMR-Gal4 on the
second chromosome were balanced with CyO balancer
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Table 2: Induction of the rough eye phenotype by h14-3-3yin a heterozygous String genetic background

Flies bearing transgene h/4-3-3y Stg? genetic background

Rough eye phenotype (%) Numbers of flies observed

No (Control) No (Control)

No (Control) Yes (heterozygous)
Yes No (Control)
Yes Yes (heterozygous)

1.39 191

0 20
1.6l 211
8.96* 257

* Statistically significant difference when compared with controls (P-value < 0.05)

chromosome. Virgin female homozygous GMR-Gal4,
UAS-h14-3-3y flies were selected to cross with
homozygous male UAS-GFP (24 chromosome) flies (Fig-
ures 4 and 5).

Using those increased dosage of hs-1433yflies,. we crossed
on h14-3-3y transgenes into a String mutant genetic back-
ground. String is a homologue of Cdc25, and the allele of
Stg?4 (a kind gift from Dr. Patrick O'Farrell) is known to
be temperature-sensitive. On the 3rd chromosome, Stg%4is
balanced with TM3 (third multiple 3) having Sb' (Stub-
ble) as a dominant marker [35]. To examine eye pheno-
types in adults expressing h14-3-3y in Stg?4 heterozygotes,
we treated the flies with multiple heat-shocks (a 30 min
heat pulse at 37°C every 7 and a half hours) starting from
3rd.instar larval stage.

RT-PCR

RT-PCR was performed using total RNA extracted from
adult flies or 3™-instar larvae. For the total RNA extrac-
tion, a FastRNA Pro Green kit (Qbiogene) was used and
followed the manufacturer's instructions. For Reverse
Transcription (RT), a mixture of Oligo-dT, dNTPs (10
mM), RNA (5 pg), and DEPC- ddH20O was incubated for
5 min at 6°C. The RT contents were collected at the bot-
tom by centrifuging, and 5 x buffer, 0.1 M DTT and RNAse
inhibitor were added. After they were incubated for 2 min-
utes at 42°C, 1 ul Superscript II RT was added. For PCR
reactions, a mixture of 41 pl Platinum Supermix (Invitro-
gen), 3 ul DMSO, 10 mM dNTP, DNA Digest 1 (1 pg of
Total RNA, 10x DNAase free buffer, DNAase, ddH20O up
to 10 pl) and 10 uM each forward and reverse primer for
1433y cDNA were added (Forward, CTGAATGAGCCACT-
GTCGAA; Reverse, CACACAGCCTCCAACTCCIT). Dro-
sophila ribosomal protein 49 encoding gene (dRP49) was
used as a loading control for the PCR reactions. The
primer sequences to flank dRP49 were 5'-GTGTATTC-
CGACCACGTITACA (RP49-antisense) and 5'-TCCTAC-
CAGCTTCAAGATGAC (RP49-sense).

Western blotting

Cell lyses were performed on ice by using 3td-instar larval
imaginal discs in RIPA buffer. Total protein 50 pg per lane
was loaded on a SDS/PAGE gel. The protein bands were
transferred onto Nitrocellulous membranes (BioTrace NT,

Pall Corporation) in transfer buffer (89.3 g glycine, 19.3 g
Tris, 1.6 L Methanol, ddH,O up to 8 L) for overnight on a
Transphor Unit (Amersham Biosciences, Cat # 80-6205-
97). Then, a primary antibody, mouse anti-14-3-3f anti-
body (pan-specific antibody detecting all human 14-3-3
isoforms, Santa Cruz, Cat # SC1657), was used ata 1:100
dilution at 4°C for overnight. A goat anti-mouse second-
ary antibody was diluted 1:5000 in PBST (1 x PBS + 0.1%
Tween 20) buffer with 5% Non-Fat Dry Milk, and the
membrane was incubated in the secondary antibody for 2
hrs at room temperature. Using an ECL detection kit
(Pierce), specific protein bands were detected onto X-ray
films (Kodak) using an autoradiographic machine
(Konica SRX-101A). The membranes were stripped in 0.1
M NaOH for 5 min at room temperature and treated with
a loading control anti-beta-actin antibody(AbCam).

Immunostaning

Mature 3rd-instar larvae were collected from controls
(Wild Types) and 1433y overexpressing animals. Heat-
shock treatment was performed for 1 hrat 37°C in a water
bath. After the heat-shock treatment, 1 hr of recovery time
was given. For fixation, imaginal discs were dissected and
immediately treated with 5% paraformaldehyde for 30
min. Tissues were washed twice for 10 min. in PBST (1 x
PBS, 0.1% Triton x-100). For a blocking step, 1% Normal
Goat Serum (NGS) was added to PBST and treated for 30
min. A neuronal cell marker, rat anti-elav antibody was
diluted 1:200. An anti-pH3 (phosphorylated Histone H3
at Serine 10, Upstate Biotechnology) antibody was used at
1:250 dilution.

The primary antibodies were added and incubated for
overnight at 4°C. The antibody rat anti-elav was obtained
from the Developmental Studies Hybridoma Bank at the
University of Iowa. FITC- or TRITC-labeled secondary
antibodies (KPL) were treated for 2 hr at room tempera-
ture. After washing in PBS-T and PBS-BT (PBST + 0.5%
BSA), the tissues were mounted in Mowiol mounting
medium (Calbiochem, Cat # 475904).

BrdU incorporation

The BrdU (Bromodeoxyuridine) incorporation was per-
formed in 1 x PBS with 5 pg/ml BrdU for 1 hr at room
temperature with gentle shaking on Nutator. Imaginal
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discs were fixed in 5% paraformaldehyde for 30 min, and
washed for 5 min 3x in PBST (1 x PBS, 0.3% Triton x-
100). Then, the tissues were treated with 2 N HCI for 30
min and neutralized for 2 min in 100 mM Borax (Sigma).
A primary antibody, mouse anti-BrdU (Becton Dickin-
son) was used at a 1:20 dilution in a mixture of PBST and
5% NGS (Vector Labs). The primary antibody incubation
was done at 4°C overnight. A goat-anti mouse TRITC-
labeled secondary antibody (Jackson ImmunoResearch)
was used at a 1:200 dilution and the imaginal discs were
treated for 2 hrs at room temperature. The discs were
mounted using Vectashield mounting medium (Vector
Labs).

Confocal laser scanning and fluorescence microscopic
studies

Confocal images were collected by using a Confocal
Microscope (Nikon Eclipse E800). For screening of the
immunostaining, a fluorescence microscope (Nikon
Eclipse E800) with X-cite 120 (Fluorescence Illumination
Systems) was also utilized. The microscopic images were
analyzed by using an Adobe Photoshop 7 software.
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