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Abstract
Events within and transitions between the phases of the eukaryotic cell cycle are tightly controlled
by transcriptional and post-translational processes. Prominent among them is a profound role for
the ubiquitin proteasome proteolytic pathway. The timely degradation of proteins balances the
increases in gene products dictated by changes in transcription. Of the dozens of ubiquitin
conjugating enzymes, or E2s, functions in control of the cell cycle have been defined for only
UbcH10 and Ubc3/Cdc34. Each of these E2s works primarily with one ubiquitin ligase or E3. Here
we show that another E2, UbcH7 is a regulator of S phase of the cell cycle. Over-expression of
UbcH7 delays entry into S phase whereas depletion of UbcH7 increases the length of S phase and
decreases cell proliferation. Additionally, the level of the checkpoint kinase Chk1 increases upon
UbcH7 depletion while the level of phosphorylated PTEN decreases. Taken together, these data
indicate that the length of S phase is controlled in part by UbcH7 through a PTEN/Akt/Chk1
pathway. Potential mechanisms by which UbcH7 controls Chk1 levels both directly and indirectly,
as well as the length of S phase are discussed and additional functions for UbcH7 are reviewed.

Introduction
Ubiquitination of particular proteins controls many
essential cellular processes by targeting the proteins for
degradation [1], transport [2] or assembly into complexes
[3-7]. Ubiquitin is a small 8 kDa protein that is attached
to the protein substrate. An energy driven a thiol relay
involving three classes of enzymes is exploited to attach
ubiquitin to substrates. First, E1 proteins, of which there
are very few, are charged with ubiquitin via a thiol ester
linkage in an ATP-dependent process. The ubiquitin is
then transferred to one of ~60 ubiquitin conjugating
enzymes or E2s. Transfer of ubiquitin to the target sub-
strate usually occurs in conjunction with an E3 ubiquitin
ligase. Of the three major types of E3s, HECT (Homolo-
gous to E6-AP C Terminus) domain E3 ligases covalently

bind the ubiquitin before passing it to the substrate. In
comparison, RING (Really Interesting New Gene)
domain E3s and U-box E3s, which have a modified RING
domain, provide the environment for the direct transfer of
ubiquitin from the participating E2 to the substrate. Sev-
eral E3s are comprised of multiple subunits, some which
bind substrates and others which aid in ubiquitin transfer.
The combinatorial options of multiple E3s and E2s are
thought to confer exquisite and extensive target specificity
[1,8]. Ubiquitination can result in the attachment of a sin-
gle ubiquitin, multiple mono-ubiquitins, or trees of ubiq-
uitin which are built using one of the seven internal
lysines in ubiquitin. Adding another level of diversity and
biological options, the multiple lysines in ubiquitin allow
the formation of many different polymer structures. The
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complexity of these ubiquitin polymer structures and
their functions within the cell are just beginning to be elu-
cidated [9-11].

The eukaryotic cell cycle is divided into four major phases,
G1, S, G2 and M. The events within these phases and the
transitions between them are tightly controlled by the
timely degradation of cell cycle regulatory proteins [12-
14]. Two E2 ligases have been described which are respon-
sible for targeting for degradation a number of crucial cell
cycle regulatory proteins. Each works primarily with one
E3. It is likely that UbcH10 is the primary E2 that cooper-
ates with the Anaphase Promoting Complex/Cyclosome
(APC/C) in vivo [15]. The APC/C catalyzes the ubiquitina-
tion of a number of substrates during mitosis, directing
progression through mitosis and into G1 [16]. A number
of substrates in G1 are also ubiquitinated via the APC/C
[17,18]. Ubc3/Cdc34 is the primary E2 which works with
another multi-subunit complex, consisting of the Skp1
and Cul1 proteins together with Rbx/Roc1 and one of sev-
eral different F-box proteins (SCF) to ubiquitinate a
number of cell cycle regulatory targets. The SCF is prima-
rily responsible for controlling the G1 to S transition
[19,20]. The APC/C and SCF complexes can also regulate
the activity of each other. The SCF together with the β
TrCP F box protein, ubiquitinates the APC/C inhibitor
Emi1, and targets it for degradation [21-23], thus activat-
ing the APC/C. In addition, the APC/C complexed with
the Cdh1 activator targets the F box Skp2 for ubiquitina-
tion in G1 [24,25]. The SCFSkp2 complex can ubiquitinate
the cyclin dependent kinase inhibitors, p27, p57 and p21
and target them for degradation, controlling the G1 to S
transition. The cross regulation between these E3 ligases is
but one example of the complexity of ubiquitin control of
the cell cycle.

DNA replication occurs in S phase and progression
through S phase is also regulated via the ubiquitin protea-
some system. In order to insure that there is only one
round of replication per cycle and preserve genome integ-
rity, factors which allow replication to proceed need to be
degraded after use. The DNA replication licensing factor
Cdt1, binds to DNA in G1 phase at origins of replication.
After replication, Cdt1 is targeted for degradation via the
SCFSkp2 E3 ligase complex as well as the Cul4DDB1/Cdt2 E3
complex [26-28]. Another example of regulation of S
phase by the ubiquitin proteasome system is the condi-
tional turnover of the Mcm 2–7 complex, which is respon-
sible for chain elongation and DNA unwinding [29].
However, the ubiquitin pathway components which are
involved in executing the ubiquitination of this complex
are not well defined [30,31].

To control the fidelity of replication, a number of proteins
inhibit cell cycle progression if DNA is damaged or repli-

cation is stalled. The checkpoint kinase proteins Chk1 and
Chk2, are involved in normal cell cycle progression as
well as in the DNA damage repair pathway and their activ-
ity is controlled in part via the ubiquitin pathway. Thus,
the activation of Chk1 via phosphorlyation by ATR after
DNA damage also triggers it for ubiquitination and degra-
dation by a CUL4 complex, assuring it is functioning for
only a specified period [32,33]. The EDD E3 ligase has
been shown to regulate S phase and the G2/M checkpoint
through ubiquitination and degradation of the check-
point kinase Chk2 upon DNA damage [34]. Additionally,
the Fanconi Anemia complex and BRCA1/BARD1 com-
plex, both of which are E3s, have S phase associated ubiq-
uitination activities [35]. These complexes work together
and their ubiquitination functions are essential for DNA
repair [36]. Despite the identification of multiple E3s that
participate in S phase events, the E2 proteins which act
with these E3 ligases to control S phase progression have
not been fully identified.

To enhance our understanding of the role of ubiquitin
dependent proteolysis in controlling the cell cycle, we
monitored the levels of different E2 proteins throughout
the cell cycle [37]. Surprisingly, we found that levels of
UbcH7 were regulated in a cell cycle dependent manner.
A role for UbcH7 in cell cycle control per se had not been
previously described [38] although it was reported that
UbcH7 may be essential for embryonic development [39].
Specifically, we observed that UbcH7 levels declined in S
phase and recovered in G2 [37,40]. Thus, we reasoned
that UbcH7 might be playing a role in controlling the cell
cycle. We asked whether manipulation of UbcH7 levels
affected cell cycle progression. Additionally, we asked
what substrates were affected by UbcH7 manipulation.
We discovered that UbcH7 has a previously unappreciated
role in controlling S phase of the cell cycle and discuss sev-
eral possible models to explain the mechanism by which
UbcH7 acts.

Discussion
Potential functions of UbcH7 in cell cycle control
UbcH7 has been shown to interact with a number of E3
ligases of both the HECT and RING families [41-54] with
putative but as yet ill defined roles in controlling the cell
cycle. UbcH7 has been shown to associate with the RING
E3 Cbl [42,43]. The most well characterized Cbl target is
the epidermal growth factor receptor (EGFR) signaling
through which stimulates cell division. Mono-ubiquitina-
tion attenuates this signaling and directs the EGFR to the
lysosome for degradation. While initial experiments sug-
gested that UbcH7 can affect the ubiquitination of EGFR
[42], controversy remains over whether UbcH7 can pass
ubiquitin to Cbl targets [54]. Additionally, UbcH7 can
associate with components of the SCF complex [52,53]
which is well known for catalyzing the poly-ubiquitina-
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tion and targeting for degradation several proteins
involved in controlling the cell cycle such as the cyclin
dependent kinase inhibitors p21 and p27 [19,20] and the
APC/C inhibitor Emi1 [21-23]. However, it is not clear
whether UbcH7 functions in conjunction with the SCF
complex to affect turnover of these specific regulatory pro-
teins. Furthermore, UbcH7 can bind to the RING E3 ligase
BRCA1/BARD1 complex but does not catalyze its auto-
ubiquitinating activity [54]. While BRCA1/BARD1 has a
role in DNA damage repair and a likely role in an unper-
turbed S phase, it is unknown whether UbcH7 can affect
the ubiquitination of BRCA1/BARD1 targets within cells.
UbcH7 can also associate with PTEN (phosphatase and
tensin homolog deleted on chromosome 10) [55] and the
HECT E3, NEDD4.1, which can ubiquitinate PTEN [48].
PTEN inhibits signaling through a number of growth fac-
tor receptors, negatively controlling entry into the cell
cycle. However, recently, the ability of NEDD4.1 to affect
the turnover of PTEN has been called into question [56].
Thus, it is unclear whether UbcH7 can affect ubiquitina-
tion or turnover of PTEN in cells. UbcH7 can also associ-
ate with the RING E3 Parkin and may be involved in the
turnover of α-synuclein [41,57] and may also affect the
level of cyclin E [53]. The role of Parkin and UbcH7 in the
turnover of cyclin E has not been fully characterized.
UbcH7 has been co-crystallized with HECT E3 E6-AP
[44,45] and UbcH7 and E6-AP can cooperate to ubiquiti-
nate p53 in conjunction with the viral E6 protein [58].
Degradation of ubiquitinated p53 allows the progression
of the cell cycle in the presence of DNA damage and the
turnover of p53 by E6-AP mediated ubiquitination affects
growth in oncogenic HPV infected cells. HHR23 and
Mcm7, both of which have functions in S phase, have
been described as substrates of E6-AP and thus may also
be UbcH7 substrates [31,59]. TRIAD-1, an E3 with two
RING domains, works with UbcH7 to inhibit myeloid cell
growth [49]. Another dual RING domain E3 p53RFP,
interacts with UbcH7 and may be involved in the turnover
of the cell cycle regulatory protein p21 and play a role in
apoptosis [60]. UbcH7 can associate with the HECT E3
Smurf2 and may inhibit signaling through the TGFβ
receptor [50]. Signaling through TGFβ generally inhibits
cell proliferation.

UbcH7 has been shown to interact with several other E3s
which do not have obvious roles in the cell cycle. UbcH7,
in association with the RING E3 NK-lytic associated mol-
ecule, may target urokinase like-1 protein for degradation
and affect natural killer cell function [46]. UbcH7 together
with the RING E3 TRAF6, ubiquitinates the neurotrophin
receptor interacting factor with K63 linked chains direct-
ing its nuclear localization [51]. Thus, UbcH7 has been
shown to be involved in a variety of cellular processes.

A role for UbcH7 in S phase
We observed in both lens and HeLa cells, that UbcH7 lev-
els declined in S phase and recovered in G2 [37,40]. Since
changes in E2 levels might be expected to alter the activity
of the cognate E3s, our observations of decreased UbcH7
in S phase suggested that targets of UbcH7-mediated
ubiquitination may be important in regulating the pro-
gression through S phase of the cell cycle. This was con-
firmed upon depletion of UbcH7 using siRNA. We found
an increase in the percentage of cells in S phase with three
different UbcH7-siRNA sequences in multiple cell types,
suggesting a common mechanism for UbcH7 action in
regulating the length of S phase of the cell cycle (Fig. 1A,
and see supplemental figure 1D in [40]). Further investi-
gation using synchronized cells, confirmed that the length
of S phase was increased upon UbcH7 depletion (Fig. 1B)
as control cells moved from S to G2 phase during 4–8
hours after drug release while UbcH7 depleted cells were
still in S phase at 8 h and didn't reach G2 until 12 h post
drug release. Consistent with a slowing of S phase when
UbcH7 levels are diminished, cell proliferation was
decreased upon UbcH7 depletion [40]. In contrast to an
increased S phase percentage upon UbcH7 depletion, over
expression of UbcH7 caused an increase in the percentage
of cells in G1 at the expense of S phase, suggesting a delay
in entry into S (Fig. 1C) and a role for a UbcH7 target in
mediating the transition from G1 into S.

How is UbcH7 exerting its control of S phase?
To further understand what mechanisms might be
involved in the UbcH7 depletion mediated S phase delay,
we examined the levels of the checkpoint kinases Chk1
and Chk2 after UbcH7 depletion. These checkpoint
kinases control the intra-S phase and G2/M checkpoints
upon DNA damage and also are involved in regulating
progression through an unperturbed S phase. We noted
that depletion of UbcH7 was associated with increased
Chk1 levels, while Chk2 levels were unchanged [40]. Sta-
bilization of Chk1 could be either a cause or a conse-
quence of S phase delay. Possible mechanisms for UbcH7
mediated cell cycle control and Chk1 stabilization are
indicated in Figure 2. Whereas under unperturbed condi-
tions the intra-S phase checkpoint is not activated and S
phase progresses normally (left side) after UbcH7 deple-
tion (right side) Chk1 is stabilized and S phase is delayed.
Pathways or substrates that are decreased are lightly
shaded, while substrates that are stabilized are dark.

UbcH7 could be affecting the level of Chk1 directly via
ubiquitination and targeting it to the proteasome for deg-
radation (Fig. 2A). Chk1 is activated via phosphorylaton
by ATR after genotoxic stress. This phosphorylation also
targets Chk1 for degradation by the ubiquitin proteasome
system [32,33] and UbcH7 can catalyze the ubiquitina-
tion of Chk1 in vitro (Y. Zhang, personal communica-
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UbcH7 levels control the entry and exit from S phaseFigure 1
UbcH7 levels control the entry and exit from S phase. (A) Cells were treated with siRNA to deplete UbcH7 (U7) or a 
non silencing siRNA (NS) for 72 h. The cell cycle profile was determined by propidium iodide staining. (B) HeLa cells were 
treated for 48 h with UbcH7 specific siRNA (U7) or a non silencing siRNA (NS) as indicated. Cells were then synchronized at 
the G1/S boundary by treatment with 2 mM hydroxyurea for 18 h. Cells were allowed to enter cycle after removal of hydrox-
yurea and culture in drug-free medium. The cell cycle profile at each time point after drug removal was determined. (C) COS 
cells were transiently transfected with plasmids containing UbcH7 or an empty vector. After 48 h of expression, the cell cycle 
profile was determined as above.
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tion). Thus, the increase in Chk1 levels we observed upon
UbcH7 depletion could be due to delayed targeting of
Chk1 to the proteasome.

Alternatively, the increase in Chk1 levels could be due to
stabilization through phosphorylation via Akt (Fig. 2B).
Chk1 is phosphorylated at position 280 by Akt and we
observed an increase of P280-Chk1 upon UbcH7 deple-
tion [40]. Importantly, Chk1 phosphorylated at position
280 is protected from the phosphorylaton by ATR which
targets it for degradation via the proteasome [61]. UbcH7
has been shown to interact with PTEN [55], a phosphatase
which inhibits signaling through PI3 kinase. PI3 kinase
activation leads to Akt activation. Upon UbcH7 depletion,
a decrease in phosphorylated PTEN was observed [40].
Thus, decreased PTEN would lead to increased Akt activa-
tion and the increase in P280-Chk1 we observed is con-
sistent with this. Additionally, because PTEN can delay
the G1 to S transition, stabilization of PTEN levels could
explain the delay in G1 to S progression observed upon
UbcH7 over expression. The mechanism by which UbcH7
affects PTEN levels is unknown. Recently, NEDD4.1 was
described as an E3 which targets PTEN for ubiquitination
and degradation [48]. UbcH7 was one of several E2s
shown to catalyze the ubiquitination of PTEN in that
study. However, more recently the ability of NEDD 4.1 to
affect PTEN stability has been called into question [56].
Additionally, if UbcH7 was involved in targeting PTEN for
degradation, we would predict an increase in PTEN levels
upon UbcH7 depletion. However, a decrease in PTEN lev-
els was observed. Thus, UbcH7 may possibly be affecting
the level or activity of an E3 or another factor which con-
trols PTEN turnover. Alternatively, since UbcH7 depletion
appears to decrease phosphorylated PTEN preferentially
[40], UbcH7 could be affecting the level of a phosphatase
that controls PTEN dephosphorylation (see Fig. 2B).

In Fig. 2C, a model for S phase extension upon UbcH7
depletion via modulation of a potential UbcH7 target is
shown. Bona fide in vivo targets for most E3s have not been

identified. It has been suggested that Mcm7 is ubiquiti-
nated in an E6-AP dependent manner [31] and UbcH7 is
one of the E2s shown to interact with E6-AP [44] and cat-
alyze its ubiquitination function. Mcm7 is part of a com-
plex that unwinds DNA at the replication fork and
changes in Mcm7 content may affect the rate of unwind-
ing. It is possible that UbcH7 depletion increases the level
of Mcm7, turning on the intra-S phase checkpoint and
thus activating Chk1. Additionally, a decrease in Mcm7,
which might be predicted upon UbcH7 overexpression,
would impair replication licensing and delay the progres-
sion from G1 into S phase.

In panel 2D a model for S phase extension upon UbcH7
depletion via modulation of BRCA1 activity is proposed.
The BRCA1/BARD1 complex is involved in DNA damage
repair and likely has functions in the progression of an
unperturbed S phase. UbcH7 has been shown to bind to
the BRCA1/BARD1 complex but not catalyze its auto-
ubiquitination [54]. Whether the binding of UbcH7 to
this complex under physiologic conditions inhibits its
ability to ubiquitinate targets in vivo remains to be deter-
mined, but BRCA1/BARD1 activity is necessary for the
intra S phase checkpoint [62]. Chk1 has been shown to be
activated via BRCA1, thus if BRCA1 activity is inhibited by
UbcH7, depletion of UbcH7 would increase BRCA1 activ-
ity which might in turn activate Chk1 and lead to a delay
in S phase progression [63].

Conclusion
It is clear that levels of UbcH7 are altered during the cell
cycle and that alteration of UbcH7 has functional conse-
quences with respect to controlling the length of S phase.
At present, we don't know which of the models described
in Figure 2 explains the changes in cell cycle progression
we observe upon UbcH7 manipulation and it is impor-
tant to realize that the models are not mutually exclusive.
Thus, it is possible that more than one of these models is
involved in orchestrating the phenomena that we've
observed. Additional understanding of how UbcH7 is

Possible mechanisms of UbcH7 regulation of Chk1 levels sand S phaseFigure 2 (see previous page)
Possible mechanisms of UbcH7 regulation of Chk1 levels sand S phase. Conditions under normal or high levels of 
UbcH7 depicted on the left; after UbcH7 depletion, on the right. Decreased protein levels or decreased signaling pathways are 
noted by gray or lighter shading. (A) UbcH7 directly targets Chk1 for ubiquitination and degradation. If UbcH7 is directly 
involved in Chk1 ubiquitination, depletion of UbcH7 (right side) would result in an increase in Chk1. (B) UbcH7 increases Chk1 
through a PTEN/Akt pathway. Depletion of UbcH7 (right) leads to decreased P-PTEN. Decreased activity through PTEN 
would increase Akt activity leading to increased P280-Chk1. The effect of UbcH7 on PTEN could be through inhibition of a 
phosphatase which affects the phosphorylation state of PTEN or through the inhibition of the E3 that targets PTEN for degra-
dation. (C) UbcH7 activates Chk1 via alteration of Mcm7 levels. Decreased ubiquitination of Mcm7 through a UbcH7/E6-AP 
pathway (right) would lead to the imbalance of proteins in the Mcm2-7 complex. This in turn could lead to the activation of the 
S phase checkpoint and an increase in Chk1 levels. (D) UbcH7 depletion activates Chk1 through an increase in BRCA1/BARD1 
function. The release of inhibition caused by UbcH7 (right) would lead to increased BRCA1/BARD1 ubiquitination and activa-
tion of the S phase checkpoint.
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activated and degraded as well as identifying bona fide
UbcH7 substrates will provide further insight into how
this E2 is exerting control over cell cycle progression and
should inform about how we can exploit the information
to design pharmaceuticals to control cell proliferation.
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