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Abstract

Oncogenic proliferative signals are coupled to a variety of growth inhibitory processes. In cultured primary human
fibroblasts, for example, ectopic expression of oncogenic Ras or its downstream mediator initiates cellular senes-
cence, the state of irreversible cell cycle arrest, through up-regulation of cyclin-dependent kinase (CDK) inhibitors,
such as p16INK4a. To date, much of our current knowledge of how human p16INK4a gene expression is induced by
oncogenic stimuli derives from studies undertaken in cultured primary cells. However, since human p16INK4a gene
expression is also induced by tissue culture-imposed stress, it remains unclear whether the induction of human
p16INK4a gene expression in tissue-cultured cells truly reflects an anti-cancer process or is an artifact of tissue cul-
ture-imposed stress. To eliminate any potential problems arising from tissue culture imposed stress, we have
recently developed a bioluminescence imaging (BLI) system for non-invasive and real-time analysis of human
p16INK4a gene expression in the context of a living animal. Here, we discuss the molecular mechanisms that direct
p16INK4a gene expression in vivo and its potential for tumor suppression.

Background
The INK4a/ARF gene locus encodes two distinct tumor
suppressor proteins, p16INK4a and ARF, whose expres-
sion enhances the growth-suppressive functions of the
retinoblastoma protein (pRb) and the p53 protein,
respectively[1-4]. It has been estimated that more than
70% of established human cancer cell lines lack func-
tional p16INK4a due to promoter methylation, mutation,
or homozygous deletion[5-10]. In many instances the
deletions affect both p16INK4a and ARF, but a substantial
proportion of the missense mutations exclusively affect
p16INK4a, suggesting that p16INK4a, by itself, plays signifi-
cant and non-redundant roles in tumor suppression
[5-10]. Indeed, accumulating evidence suggest that the
p16INK4a gene acts as a sensor of oncogenic stress, its
expression being up-regulated upon the detection of
various potentially oncogenic stimuli, such as cumulative
cell division or oncogenic Ras expression, in cultured
human primary cells[11-15]. This unique feature of
p16INK4a gene expression, together with its ability to

induce the irreversible cell cycle arrest termed cellular
senescence, raises the possibility that the p16INK4a gene
acts as a safe-guard against neoplasia[3,4,16-19]. How-
ever since the simple act of placing cells in tissue cul-
ture is sufficient to activate p16INK4a gene expression
and the levels of p16INK4a gene expression vary depend-
ing on the cell culture conditions[20-23], it remains
unclear whether the induction of p16INK4a gene expres-
sion in cultured human primary cells truly reflects an
anti-cancer process or is an artifact of tissue culture-
imposed stress.
We believe that p16INK4a knockout mouse is a power-

ful tool for elucidating the physiological roles of
p16INK4a gene expression in vivo[24,25] A limitation of
this approach, however, is the developmental or somatic
compensation by the remaining p16INK4a family genes
(p15INK4b, p18INK4c and p19INK4d) [26-28]. Moreover, the
possibility of cross-species differences between human
p16INK4a gene expression and mouse p16INK4a gene
expression also complicates the interpretation of
p16INK4a knockout mouse data[3]. Alternative
approaches are therefore needed to supplement the
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the roles and mechanisms regulating human p16INK4a

gene expression in vivo.
Bioluminescence imaging (BLI) is an emerging

approach that is based on the detection of light emission
from cells or tissues[29,30]. Optical imaging by biolumi-
nescence allows a non-invasive and real-time analysis of
various biological responses in living animals, such as
gene expression, proteolytic processing or protein-pro-
tein interactions in living animals [31-36]. Recently, we
have generated a new transgenic mouse line (p16-luc)
expressing the fusion protein of human p16INK4a and
firefly luciferase under the control of human p16INK4a

gene regulation[37]. Using this humanized mouse
model, we have recently explored the dynamics of
human p16INK4a gene expression in many different bio-
logical processes in living animals[37]. In this commen-
tary, we will introduce the unique utility of BLI in
advancing our understanding of the timing and hence,
likely roles and mechanisms regulating p16INK4a gene
expression in vivo.
Real-time imaging of p16INK4a gene expression in living
animals
In order to monitor human p16INK4a gene expression as
accurately as possible, we used a large genomic DNA
segment of the human chromosome that contains the
entire INK4a/ARF gene locus(Figure 1). Furthermore,
this human chromosomal segment was engineered to
express a fusion protein of human p16INK4a and firefly
luciferase without deleting any genomic DNA sequences
of the INK4a/ARF gene locus (Figure 1). This is crucial,
because BMI-1, which is a negative regulator of
p16INK4a gene expression[38], has been shown to bind
not only to the promoter region, but also to the intron
region of the p16INK4a gene locus[39]. Moreover, the
expression of the p16-luc fusion protein enables us to
specify p16INK4a gene expression, but not ARF gene
expression, from this overlapping gene locus.
By monitoring and quantifying the bioluminescent sig-

nal repeatedly in the same p16-luc mouse throughout its
entire lifespan, we were able to unveil the dynamics of
human p16INK4a gene expression in the aging process of
the transgenic mouse (Figure 2). Importantly moreover,
the bioluminescence signal levels correlated well with
not only exogenous (human) but also endogenous
(mouse) p16INK4a gene expression, indicating that over-
all regulation of human p16INK4a gene expression is very
similar to that of mouse p16INK4a gene expression, at
least in mouse cells[37]. This is consistent with the pre-
vious notion that the levels of p16INK4a gene expression
were increased during the aging process of both rodents
and primates [20,40-43]. These results illustrate the
potential of the p16-luc mice for the analysis of
p16INK4a gene expression in response to oncogenic sti-
muli in vivo.

The response of p16INK4a gene expression to oncogenic
stimuli in vivo
Although ectopic expression of oncogenic Ras initiates
cellular senescence through up-regulation of p16INK4a

expression in cultured normal human fibroblasts
[3,4,13,14,44], this is not the case in freshly isolated nor-
mal human fibroblasts [23]. It remains, therefore,
unclear whether the induction of p16INK4a gene expres-
sion by oncogenic Ras expression in cultured cells truly
reflects an anti-cancer process or an artifact of tissue
culture-imposed stress. To explore this notion in a more
physiological setting rather than using the ectopic
expression of oncogenic Ras in cultured cells, the p16-
luc mice were subjected to a conventional chemically-
induced skin papilloma protocol with a single dose of
DMBA, followed by multiple treatments with TPA.
Because this protocol induces benign skin papillomas,
more than 90% of which harbor an oncogenic-mutation
in the H-ras gene[45,46], it appears to be ideal for
studying the physiological response to oncogenic muta-
tion in the endogenous H-ras gene in vivo.
When p16-luc mice were treated with the DMBA/

TPA protocol, benign skin papillomas began to appear
after 7 weeks of treatment and continued to grow to a
larger size for a further 18 weeks (early-stage papilloma).
Although bioluminescent signals were hardly detectable
during this time, a significant level of bioluminescent
signal was induced as the papillomas stopped growing
(late-stage papilloma) (Figure 3). The levels of the biolu-
minescent signals were well correlated with those of
endogenous p16INK4a expression, as well as other senes-
cence markers such as senescence-associated (SA)
-galactosidase ( -gal) activity and de-phosphorylation of
pRb[37], indicating that the oncogenic Ras signaling
derived from the endogenous H-ras gene indeed pro-
vokes p16INK4a expression, accompanied by senescence
cell cycle arrest, in vivo. This also suggests p16INK4a may
play important role(s) in late papillomas, presumably
preventing the malignant conversion of benign tumors.
In agreement with this notion, by 30 weeks after
DMBA/TPA treatment, approximately 33% of p16INK4a

knock-out mice (C57BL/6 background) had at least one
carcinoma, compared with 5% of the wild type mice
(unpublished data). These results are also consistent
with a previous study showing that the tumor-free survi-
val of DMBA-treated mice was substantially reduced in
p16INK4a knockout mice [47].
Epigenetic regulatory mechanism underlying the p16INK4a

gene induction
Given that oncogenic mutation in the H-ras gene occurs
immediately after DMBA treatment [45], it was puzzling
that p16INK4a gene expression was fully induced in the
late- but not early- stage papillomas (Figure 3). Interest-
ingly, the levels of DNMT1, which is known to repress
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p16INK4a gene expression, were significantly increased in
early-stage papilloma and subsequently reduced in late-
stage papillomas[37]. Intriguingly moreover, the status
of the histone 3 Lys 9 methylation (H3K9me), but not
the CpG methylation around the p16INK4a gene promo-
ter, was well correlated with the levels of DNMT1
expression during the course of papilloma development
[37]. These results, together with a recent observation

that DNMT1 possesses an activity to enhance H3K9
methylation through interacting with G9a, a major
H3K9 mono- and di- methyltransferase [48], suggest
that DNMT1 serves to counterbalance the activation of
the p16INK4a gene promoter mediated by oncogenic Ras
during skin papilloma development. Of note, the levels
of DNMT1 were initially increased by oncogenic Ras
expression and subsequently reduced as cells reached

Figure 1 Strategy for in vivo imaging of p16INK4a gene expression. A large genomic DNA segment (195.4 kb) of human chromosome that
contains the entire INK4a/ARF gene locus and surrounding sequences was engineered to express luciferase-tagged p16Ink4a. FISH technique
reveals that the transgenic mice line (p16-luc) contanins a single copy of the human chromosome segment. The arrow shows the transgene.
The p16-luc mouse was anesthetized and subjected to in vivo bioluminescence imaging after injection of luciferin.

(photons/second)
2.0X104 1.0X105

1.5 month 12 month 22 month 24 month

Figure 2 Real-time bioluminescence imaging of p16INK4a gene expression during aging process in vivo. The same p16-luc mice were
subjected to noninvasive BLI throughout their entire life span. The level of bioluminescent signals is significantly increased throughout the body
during aging.
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the senescence stage in cultured human primary fibro-
blasts[37]. Together, these results indicate that a similar
mechanism is likely to be involved in the regulation of
p16INK4a gene expression by oncogenic Ras signaling,
both in vitro and in vivo.
DNA damage response regulates p16INK4a gene
expression through DNMT1
It has previously been shown that oncogenic Ras signal-
ing activates the DNMT1 gene promoter through AP1
[49]. Thus, the induction of DNMT1 expression appears
to be caused by a direct effect of oncogenic Ras expres-
sion. However, it was unclear how DNMT1 is reduced
in the late stage of papilloma development. Our results
strongly suggest that the DNA damage response (DDR)
triggered by hyper-cell proliferation [50-52] plays critical
role(s) in blocking DNMT1 gene expression, at least
partly, through the elevation of the reactive oxygen spe-
cies (ROS) level in late-stage papillomas [37]. Since
DNMT1 gene expression is known to be regulated by
E2F [53], and E2F activity is reduced by H2O2 treatment

(unpublished data), it is most likely that ROS regulate
DNMT1 expression, at least in part, through E2F. These
results, together with the observation that depletion of
DNMT1 causes up-regulation of p16INK4a gene expres-
sion in cultured human cells [54,37], indicate that DDR
plays key role(s) in the induction of p16INK4a gene
expression through blocking DNMT1 expression in the
context of Ras-induced senescence in vivo.
Because the p53 tumor suppressor is activated imme-

diately after detection of DNA damage, preventing accu-
mulation of DNA damage[55,56], it is possible that p53
might block the DDR pathway activating p16INK4a gene
expression. To explore this idea, we again took advan-
tage of using p16-luc mice, in conjunction with p16-luc
mice lacking the p53 gene[37]. Indeed, although biolu-
minescent signals were only slightly induced after treat-
ment with doxorubicin (DXR), a DNA damaging agent,
in p16-luc mice, this effect was dramatically enhanced
by p53 deletion, especially in highly proliferating tissues
such as the thymus or small intestine[37]. Furthermore,

皮皮膚がん発症過程でのp16遺伝子発現のリアルタイム・イメージング
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Figure 3 Real-time imaging of p16INK4a expression during skin papilloma development. The p16-luc mice were subjected to a
conventional chemically induced skin papilloma protocol with a single dose of DMBA followed by multiple treatments with TPA. This protocol
causes an oncogenic mutation in the H - ras gene. Benign skin papillomas began to appear after 7 weeks of DMBA treatment, and continued to
grow until 20 weeks or so. However, after that, most papillomas stop growing. So we classified these growing papillomas as the early stage
papilloma and non-growing papillomas as the late stage papillomas. The p16-luc mice were subjected to noninvasive BLI, and the significantly
elevated bioluminescent signals were detected in the late stage papillomas. The color bar indicates photons with minimum and maximum
threshold values.
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the DDR-pathway activating p16INK4a gene expression
and consequent cellular senescence was provoked natu-
rally in the thymus of nearly all mice lacking p53 gene
at around 10 to 20 weeks after birth[37]. It is therefore
possible that p16INK4a may play a back-up tumor sup-
pressor role in case p53 is accidentally inactivated, espe-
cially in highly proliferative tissue such as the thymus.
A regulatory circuit between p53 and p16INK4a tumor
suppressors
Our results lead to the following model, in which onco-
genic Ras signaling has the potential to activate p16INK4a

gene expression immediately [13-15], but this effect is
initially counteracted by elevation of the DNMT1 levels,
which thereby causes hyper-cell proliferation. However,

since hyper-cell proliferation tends to cause DNA
damage and the elevation of ROS, DNMT1 gene expres-
sion is eventually reduced by this ROS increase, leading
to epigenetic de-repression of p16INK4a gene expression
and hence senescence cell cycle arrest (see model in Fig-
ure 4). Interestingly, moreover, this pathway is poten-
tiated in the setting of p53 deletion, because p53 tends
to prevent the proliferation of damaged cells that would
cause a further accumulation of DNA damage (Figure 4)
[55,56]. It is therefore most likely that p16INK4a plays a
back-up tumor suppressor role if p53 becomes inacti-
vated. In agreement with this notion, it has recently
been shown that the levels of p16INK4a gene expression
are substantially increased in the mice lacking the p53

Figure 4 Cross talk between the p53 and p16 pathways through DDR. Although oncogenic Ras signaling has a potential to activate
p16Ink4a gene expression, this effect is initially counteracted by an elevation of DNMT1 level and thereby causes a strong proliferative burst,
resulting in the accumulation of DNA damage. The accumulation of DNA damage activates ROS production, which in turn blocks DNMT1 gene
expression, thereby causing epigenetic derepression of p16Ink4a gene expression and thus senescence cell cycle arrest. This pathway is
counterbalanced by the p53 pathway because p53 is immediately activated by DNA damage and blocks proliferation of damaged cells that
cause further accumulation of DNA damage. Thus, the DDR pathway-induced p16Ink4a expression is accelerated in the event of p53 inactivation.
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gene [57]. Moreover, over-expression of Aurora A
resulted in a significant induction of p16INK4a expression
in the mammary glands of p53 knock-out mice [58]. It
is also worth emphasizing that p53 inactivation alone is
not sufficient to fully abrogate telomere-directed cellular
senescence, but the combined inactivation of p53 and
p16Ink4a does do so [59,60]. These results, together with
our recent findings[37], help to explain why mice doubly
deficient for p53 and p16INK4a exhibited an increased
rate of tumor formation [61,62], and why the combina-
tion of p53 and p16INK4a loss is frequently observed in
human cancer cells [63].
Concluding remarks
It is, however, clear that all aspects of p16INK4a regula-
tion cannot be explained by the factors described here,
and that the p16INK4a gene is subject to multiple levels
of control [15,38,39,64-74]. Nonetheless, we have uncov-
ered an unexpected link between p53 and p16INK4a gene
expression[37], expanding our understanding of how
p16INK4a gene expression is induced by oncogenic sti-
muli in vivo, thus opening up new possibilities for its
control. Visualizing the dynamics of p16INK4a gene
expression in living animals, therefore, provides a
powerful tool for not only helping to resolve issues con-
necting in vitro studies, but also clarifying previously
unrecognized functions of this key senescence regulator
in various physiological processes in vivo.
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CDK: cyclin-dependent kinase; BLI: bioluminescence
imaging; DDR: DNA damage response; pRb: retinoblas-
toma tumor suppressor protein; DNMT1: DNA methyl
transferase 1; H3K9: histone 3 Lys 9; H3K9me: histone
3 Lys 9 methylation; ROS: reactive oxygen species
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