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Abstract

Eukaryotic chromatin is a combination of DNA and histone proteins. It is established fact that epigenetic
mechanisms are associated with DNA and histones. Initial studies emphasize on core histones association with
DNA, however later studies prove the importance of linker histone H1 epigenetic. There are many types of linker
histone H1 found in mammals. These subtypes are cell specific and their amount in different types of cells varies as
the cell functions. Many types of post-translational modifications which occur on different residues in each subtype
of linker histone H1 induce conformational changes and allow the different subtypes of linker histone H1 to
interact with chromatin at different stages during cell cycle which results in the regulation of transcription and
gene expression. Proposed O-glycosylation of linker histone H1 promotes condensation of chromatin while
phosphorylation of linker histone H1 is known to activate transcription and gene regulation by decondensation of
chromatin. Interplay between phosphorylation and O-b-GlcNAc modification on Ser and Thr residues in each
subtype of linker histone H1 in Homo sapiens during cell cycle may result in diverse functional regulation of
proteins. This in silico study describes the potential phosphorylation, o-glycosylation and their possible interplay
sites on conserved Ser/Thr residues in various subtypes of linker histone H1 in Homo sapiens.

Introduction
Eukaryotic genome is packaged into a structure known
as chromatin. The basic structural unit of chromatin
called as nucleosome is composed of DNA and proteins
[1]. The major proteins involved in chromatin structure
are histone proteins. Histone proteins are of five types:
H1, H2A, H2B, H3 and H4 [2-4]. Histone H1 is known
as linker histone while the other four histone proteins
are collectively known as core histones. This DNA-pro-
tein complex is the tempelate for a number of essential
cell processes including transcription recombination,
repair and replication. Histone H1 is located on the lin-
ker DNA that goes between the nucleosomes in chro-
matin structure [5]. Linker DNA which is associated
with linker histone H1 interconnects core particles, var-
ies in length, depending on species and tissue [6]. Orga-
nization of DNA into nucleosomes by histone proteins
and folding of nucleosomes into higher-order chromatin

structure is generally believed to compact DNA and
make it inaccessible to transcription factors [7]. Linker
histones H1 are necessary for modulating chromatin
structure and function at multiple levels [8].
Organisms contain a variety of subtypes of linker his-

tone which exhibit significant sequence divergence and
distinct patterns of expression differentiation and devel-
opment [9]. The H1 linker histones are the most diver-
gent group. Usually nine subtypes of linker histone H1
are present in mammals including H1.1, H1.2, H1.3,
H1.4, H1.5, H1o, H1Foo, H1.t [10] and H1.x [11]. Linker
histone sub-types are classified according to their tightly
regulated expression pattern during embronyal develop-
ment and cell differentiation [12]. All known sub-types
of linker histone contain a common domain structure.
Linker histones consist of a short N-terminal, a highly
conserved central globular domain and a long C-term-
inal domain [13]. Somatic cells contain almost all sub-
types of linker histone H1 [12]. In vitro, H1-containing
chromatin shows strong inhibition of transcription [14]
and transcriptionally active chromatin typically depleted
in H1 compared with inactive chromatin [15].

* Correspondence: waqarchemist@hotmail.com
1Centre of Excellence in Molecular Biology, University of the Punjab, Lahore,
Pakistan
Full list of author information is available at the end of the article

Ahmad et al. Cell Division 2011, 6:15
http://www.celldiv.com/content/6/1/15

© 2011 Ahmad et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:waqarchemist@hotmail.com
http://creativecommons.org/licenses/by/2.0


Wisniewski et al. showed that many of the mapped mod-
ification sites which are thought to be involved in binding
to nucleosomal DNA are located within the globular
domain region of the different subtypes of the linker his-
tone H1 [16]. H1 depletion results in a dramatic length-
ening of chromosomes, which suggests an important role
in mitotic chromosome condensation [17]. The presence
of these large number of various H1 histone subtypes
and their possible post-translational modifications, make
it very clear that H1 histones play numerous structural
and functional roles in chromatin [18]. Until now, no
specific role for the various variants has been established
but it is known that the mouse histone H1.2 binds prefer-
entially to a regulatory sequence within a mouse H3.2
replication-dependent histone gene [19].
Post-translational modifications (PTMs) of linker his-

tone H1 play very important role in regulation of chro-
matin structure, transcriptional regulation, gene activity
[17] and controlling the accessibility of transcription fac-
tors to chromatin structure [20]. A working model of
the cell cycle has slowly been constructed from the dis-
covery of cyclins 22 years ago. This model is composed
of protein phosphorylation, acetylation timed expression
of cyclins, and well orchestrated cell division. Neverthe-
less, a detailed mechanism of the cell cycle is still
incomplete [21-23]. Transcriptional activation of genes
starts with the dissociation of linker histone H1 from
linker DNA [24]. Phosphorylation of linker histone is
required for efficient cell cycle progression by enzyme
CDK2 [25]. These kinases requires a consensus
sequence (S/T)PXZ or (S/T)PXK for phosphorylation
(where X is any amino acid and Z is a basic amino acid)
and this consensus sequence is found in many linker
histone H1 variants which become phosphorylated [26].
It is found that PKC is also involved in phosphorylation
of linker histone variants during regulation of gene
expression in cell cycle [27]. Phosphorylation of linker
histone regulates transcription and gene expression by
reducing the electrostatic binding of linker histone to
DNA in chromatin [28]. In vivo phosphorylation of the
linker histone tails influence both the binding to mono-
nucleosomes and the aggregation of polynucleosomes
[29]. The phosphorylation of linker histones at their N
and C-terminal tails during the cell cycle influence its
functions for enhancing decondensation which in turn
regulate transcription and gene expression. This phos-
phorylation and dephosphorylation is a common regula-
tory mechanism for protein functions [30].
O-Glycosylation is also very important PTM of pro-

teins. During O-Glycosylation one molecule of N-acetyl-
glucosamine (O-b-GlcNAc) is introduced on Ser or Thr
residue by enzyme O-GlcNAc transferases (OGT). Addi-
tion of O-b-GlcNAc can inhibit phosphorylation on Ser
or Thr residue and is reciprocal with phosphorylation

on some well studied proteins, such as RNA polymerase
II, estrogen receptor, and the c-Myc proto-oncogene
product [31-34]. These studies suggest that O-GlcNAc
may function as a global regulator of cell growth and
division. Deletion of OGT in mouse embryonic fibro-
blasts is associated with delayed growth, increased
expression of the cyclin inhibitor p27, and death. A
reduction in O-GlcNAc levels results in cell growth
defects, by the lowering UDP-GlcNAc levels to 5% of
normal [35,36]. Studies in Xenopus demonstrated
maturation defects in oocytes when microinjected with
galactosyltransferase which prevents O-GlcNAc removal.
Meanwhile incubation of Xenopus oocytes with the O-
GlcNAcase inhibitor PUGNAc altered progression of
oocytes through progesterone-mediated maturation
[37-40].
In 1994, Kim et al. first time observed the o-GlcNAc

modification in mouse linker histone H1. They also
observed same PTM on core histones [41]. In 2005,
Slawson et al. showed that increased O-GlcNAc resulted
in growth defects linked to delay in G2/M progression,
altered mitotic phosphorylation, and cyclin expression.
Over expression of O-GlcNAcase, the enzyme that
removes O-GlcNAc, induces amitotic exit phenotype
accompanied by a delay in mitotic phosphorylation,
altered cyclin expression, and pronounced disruption in
nuclear organization. Overexpression of the O-GlcNAc
transferase, the enzyme that adds O-GlcNAc, results in
a polyploid phenotype with faulty cytokinesis. Notably,
O-GlcNAc transferase is concentrated at the mitotic
spindle and mid body at M phase. These data suggest
that dynamic O-GlcNAc processing is a pivotal regula-
tory component of the cell cycle, controlling cell cycle
progression by regulating mitotic phosphorylation, cyclin
expression, and cell division [42]. On the basis of above
observations, Kaleem et al (2008) used bioinformatics
tools to predict o-glycosylation on human core histone
H3, even though there was no experimental proof of
that PTM on histone H3 [43].
Interplay between O-b-GlcNAc modification and

phosphorylation on the same amino acid residues has
been observed in several nuclear and cytoplasmic pro-
teins [44]. These PTMs are dynamic and result in tem-
porary conformational changes and regulate many
functions of the proteins. The alternation of these two
modifications on the same or neighboring residue may
modulate the specific function of the proteins either by
enhancing or inhibiting the functional capacity. Residues
where O-b-GlcNAc and phosphorylation compete for
each other are known as Yin Yang sites [45]. These Yin
Yang sites can be predicted and analyzed using various
computer-assisted neural network-based programs,
which can help us to determine proteins regulatory
functions by accessing their modification potentials.
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Although a yin/yang relationship between phosphoryla-
tion and O-GlcNAcylation on histone H3 has been pro-
posed; the direct evidence for O-glycosylation of histones
was never been described. Recent studies by Sakabe et al
(2010-2011) first time proved the O-GlcNAc modifica-
tion on histones and also mapped glycosylation sites with
specific immunological, enzymatic and mass spectro-
metric techniques. They also insist to include O-GlcNAc
modification as part of histone code. They showed that
histone O-GlcNAcylation increases with heat shock and
this increase is concomitant with DNA condensation
[46,47]. The present work describe potential phosphory-
lation, O-Glycosylation and their possible interplay sites
which influence condensation, decondensation and tran-
scriptional and gene regulation during cell cycle in var-
ious subtypes of linker histone H1.

Materials and Methods
The sequences of different types of linker histone H1 of
many species mostly mammals have been described by
many workers [10,11,16]. The sequence data used for
predicting phosphorylation and glycosylation sites for
different subtypes of linker histone H1 of human was
retrieved from the SWISS-PROT [48] sequence data-
base. The primary accession numbers for each subtype
of linker histone in human are Q02539 (H1.1), P16403
(H1.2), P16402 (H1.3), P10412 (H1.4), P16401 (H1.5),
Q81ZA3 (H1oo), P22492 (H1.T), P07305 (H1.0) and Q
92522 (H1.X). BLAST search was made using the NCBI
database of non-redundant sequences [49]. The search
was done for all organisms’ sequences with expect value
set to 10 using blosum 62 matrix and low complexity
filter selecting nr database. Hits with highest bits score
and zero expect value were selected. The four to five
sequences of each subtype of linker histone H1 from
different selected species were selected to find out con-
served residues in Homo sapiens linker histone H1. All
selected sequences were multiple aligned using CLUS-
TALW [50]. All the sequences of subtypes of linker his-
tone H1 present in Homo sapiens were aligned to get
the conservation status of subtypes.

Post-translational modifications prediction methods
Phosphorylation sites on Ser, Thr and Tyr residues were
predicted by using NetPhos 2.0 (http://cbs.dtu.dk/ser-
vices/NetPhos/) server [51]. NetPhos 2.0 is a neural net-
work-based method for the prediction of potential
phosphorylation sites.
NetPhosK 1.0 server (http://cbs.dtu.dk/services/Net-

PhosK) [52] was used to predict kinase specific phos-
phorylation sites in human histone H1.
Phospho.ELM database (http://phospho.elm.eu.org/)

was used for the determination of the experimentally ver-
ified phosphorylation sites [53] present on various linker

histone H1 subtypes in different species. The Phospho.
ELM database contains a collection of experimentally
verified Ser, Thr and Tyr sites in eukaryotic proteins.
To predict potential O-b-GlcNAc modification sites,

YinOYang 1.2 (http://www.cbs.dtu.dk/services/
YinOYang/) was used. This method is also capable of
predicting the potential phosphorylation sites as well
and hence predicting the Yin Yang sites [54-56].

Neural networks-based prediction methods
Artificial neural networks based methods have been exten-
sively used in biological sequence analysis and predicting
the potentials for modifications [57]. The methods devel-
oped using machine learning approach includes memoriz-
ing the neural networks with the sequence environment
windows of phosphorylated/glycosylated and non-phos-
phorylated/non-glycosylated sites. During this learning
process the input data of phosphorylated/glycosylated and
non-phosphorylated/non-glycosylated sites is presented to
neural networks in the form of binary codes of 21 digits. A
threshold value in form of bits is set for positive hit and
zero for negative hits. The learning process and perfor-
mance is checked with the data reserved for cross valida-
tion using statistical equations. During learning, the error
is computed and weights given to each neuron are set to
get the maximum correct predictions.

Results
Allignment of sequences for determination of conserved
status of Ser/Thr residues within different linker histone
subtypes
Each human linker histone subtype was aligned with
other species. Conserved and conserved substituted Ser
and Thr residues within each subtype were determined
(Data not shown). These nine subtypes were also aligned
with each other to find conserved residues within sub-
types (Figure 1).

Prediction of phosphorylated S/T residues with motif
(S/T)PXZ and (S/T)PXK motifs were searched for each
linker histone H1 subtypes. Sequences within boxes
showed the specific motifs (Figure 1). These residues are
given in Table 1.

Acquiring of experimentally verified S/T/Y residues
Data for experimentally confirmed S/T/Y residues was
obtained from Phospho ELM and UniprotKB (http://
www.uniprot.org) is given in Table 1. All histone H1
subtypes phosphorylated during cell cycle except H1oo.

Prediction of Phosphorylation Sites
NetPhos 2.0 server was used for the prediction potential
for phosphorylation of possible Ser and Thr residues
among all known subtypes of linker histone H1. All the
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subtypes of linker histone H1 showed high potential for
phosphorylation as shown in Figure 2. The predicted
Ser and Thr residues are shown in Table 1.

Prediction of Kinases involved in Phosphorylation
Different kinases are involved in phosphorylation of Ser
and Thr residues of linker histone H1 subtypes. Almost
each kinase predicted is involved in phosphorylation of
two or more residues. The predicted kinases involved in
phosphorylation by NetPhos K 1.0 are shown in Table 2.

Prediction of O-Linked Glycosylation Sites
Prediction results for O-linked glycosylation sites showed
that all subtypes of linker histone H1 have very high poten-
tial for O-b-GlcNAc modification Table 3. There are many
predicted Yin Yang sites in each subtype of linker histone
which are shown by an asterisk as shown in Figure 3.

Identification of False-Negative Sites
The Ser and Thr residues which were not predicted to be
O-b-GlcNAc modified but have very high potential for
phosphorylation and very close to threshold value are
known as false-negative sites (FN-sites). All the Ser and Thr
residues which were predicted false-negatively with high
conservation status and phosphorylation potential among
different subtypes of linker histone H1 are given in Table 3.

Possible proposed YinYang sites within different subtypes
of linker histone H1
The possible proposed Yin Yang sites for the interplay
of phosphorylation and O-b-GlcNAc modification are

given in Table 3. These Yin Yang sites are proposed on
the basis of conservation status of Ser/Thr residues in
each subtype of linker histone H1. The Ser/Thr residues
are also proposed for the possible interplay of phosphor-
ylation and O-b-GlcNAc modification on the basis of
their similarity with other species. These Ser/Thr resi-
dues which are predicted “by similarity” are not yet
experimentally known in Homo sapiens but these are
known in other species of vertebrates.

Discussion
Human linker histones have more than eight sub-types,
all consisting of a highly conserved globular domain and
less conserved N- and C-terminal tails. The sequence of
terminal tails of different subtypes of linker histone H1
within a species is much less conserved but the
sequence of terminal tails of a specific subtype is well
conserved among different species [58]. In addition to
heterogeneity of their primary structures, the histone
tails are also post-translationally modified under various
biological conditions [59]. The proportion of linker his-
tone H1 subtypes varies in a tissue- and species-species
manner [60], and the expression of each subtype varies
throughout development and differentiation [61]. Stu-
dies of the structure of different subtypes of linker his-
tone H1 and their interaction with the nucleosome and
their roles in controlling gene activity indicate that lin-
ker histones have both an essential architectural func-
tion and an important task in regulating transcription
[2]. The precise functions and modifications of linker
histones are not yet fully understood, but it is known
that different linker histone variants are preferentially
localized to particular chromosomal domains. The
sequences within the globular domain of linker histone
H1 are thought to be responsible for the differential
effect of overproduction of different linker histone var-
iants on gene expression [62], while the N- and C-term-
inal domains of linker histone H1 are responsible for
the condensation of chromatin [63]. The N-terminal of
linker histone H1 binds with linker DNA [64] and C-
terminal of linker histone H1 has binding affinity with
core histones [58]. Different linker histone H1 subtypes
have different chromatin condensing abilities [65]. All
linker histone H1 subtypes differ not only in primary
sequence but also in turnover rate, timing of synthesis
during development and extent of phosphorylation and
they also have the potential to add a great deal of flex-
ibility to chromatin structure and transcriptional activa-
tion [66]. Linker histone H1 is required for longitudinal
compaction of replicated chromosome. Enrichment of
linker histone H1 onto chromatin required passage
through interphase, when DNA replication takes place.
Thus, linker histone H1 contributes to chromosome
condensation in vertebrates [67]. In mouse depletion of

Figure 1 Sequence alignment of different subtypes of linker
histone H1 present in Homo sapiens. The residues highlighted in
red show conserved and conserved substitution regions in Ser and
Thr residues, while the regions highlighted in yellow show that Ser
and Thr residues which are conserved in maximum subtypes but
not present in all of the subtypes in linker histone H1. The
consensus sequences (motifs) for phosphorylation are shown in
square lines.
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linker histone H1 caused chromatin structure changes
which include decreased global nucleosome spacing,
reduced chromatin compaction and decreased in certain
histone modifications like methylation [68]. In vitro
experiments showed that linker histone H1 represses
transcriptional promoters and factors by condensing the
chromatin material [69] but in vivo studies showed that
linker histone H1 does not function as a global tran-
scriptional repressor, but instead participates in com-
plexes that either activate or repress specific genes [70].
Differences between linker histone H1 subtypes for both
binding and the capacity to aggregate polynucleosome
into condensed structure implies functional differences
between the different linker histone H1 subtypes during
cell cycle and development of organism [71]. Sub-

fractions of H1 histones differ in their effectiveness in
condensing DNA fibers into ordered aggregates.
Furthermore, each of linker histone H1 variant has dif-
ferences in their binding capacity with DNA [72].
Hale et al. showed that phosphorylation of linker his-

tone H1 provides a signal for the disassembly of higher
order chromatin structure during cell cycle [73]. Linker
histone H1 phosphorylated in a cell-cycle dependent
manner, in G1 phase levels of H1 phosphorylation are
usually lowest and then rise continuously during S and
G2 phase. The M-phase where chromatin is highly con-
densed shows the maximum no. of phosphorylated sites
[74]. The phosphorylation of linker histone H1 subtypes
occurs on specific Ser and Thr residues during cell cycle
in the presence of different protein kinases [75].

Table 1 Phosphorylation and O-b-GlcNAc site map of Homo sapiens

Substrate Phosphorylation Sites by NetPhos Experimentally
known

Predicted
by Motif

Yin Yang sites Conserved Conserved
sub

H1.1 SER 33, 41, 51, 52, 53, 91, 106, 114, 115, 123, 135,
145, 148, 164, 165

1, 35, 103, 183 183 33, 52, 53, 114,
164, 165

41, 43, 51, 53, 60,
106, 183

1, 48, 52, 91,
103

THR 94, 151, 161, 173, 199, 203 151 151 161, 173, 199,
203

94 101, 151, 11,
164, 203

H1.2 SER 35, 50, 54, 104, 112, 149, 172, 187 1, 172 172 30, 50, 187 1, 40, 58, 77, 102,
104, 172, 187

35, 85, 88,
112

THR 30, 91, 145, 153, 166 30 30, 145,
153

145, 166 44, 91, 95, 98 3, 153

H1.3 SER 36,51, 55, 104, 113, 150, 173, 188, 204 188 173, 188 35, 51, 188, 204 36, 41, 51, 58, 79, 89,
102, 104, 188

1, 86

THR 18, 92, 146, 154, 167, 179 18 18, 146,
154

146 3, 45, 92, 96, 99 154

H1.4 SER 26, 35, 50, 54, 103, 112, 150, 171, 186 35, 171, 186 171, 186 35, 50, 186 1, 35, 40, 50, 54, 57,
78, 85, 88, 101, 103,
112, 150, 171, 186

172, 188

THR 17, 91, 145, 153, 202 17 17, 145,
153

17, 145, 202 3, 17, 91, 95, 98, 145 141, 153, 202

H1.5 SER 17, 43, 53, 106, 115, 172, 188 17, 172, 188 17, 172 17, 43, 53 1, 43, 60, 80, 104,
106, 115

17, 53, 88,
91, 172

THR 10, 24, 38, 94, 137, 154 137,154 10, 137,
154

10, 38 38 3, 8, 47, 98,
101, 154

H1.0 SER 6, 18, 21, 44, 48, 65, 70, 97, 103, 123, 130, 185 123 6, 21, 44, 97, 103,
123, 130

4, 6, 21, 28, 44, 45,
55, 65, 70, 89, 91,
103, 130, 170, 184,

185

18, 97, 115

THR 109, 118, 134, 140, 152, 161 118, 140,
152

134, 161 1, 5, 22, 76, 77, 83,
109, 118, 123, 134,

140, 152

161

H1.T SER 8, 42, 52, 54, 86, 107, 111, 118, 126, 128, 137,
140, 142, 165, 180, 187, 204

177 142, 180 8, 54, 118, 180,
204

1,42, 44, 52, 54,61,81,
105,107,140, 142,165,

180

8, 35, 126,
128, 137,

187, 189, 204

THR 131, 148, 158, 159, 162, 203 158, 159 148, 158, 159,
162, 203

3, 21, 99, 102, 148,
158

10, 48, 131,
145, 203

H1oo SER 8, 11, 13, 14, 16, 20, 21, 23, 26, 32, 42, 73, 161,
211, 229, 230, 235, 243, 245, 246, 260, 262, 263,

276, 336, 337, 340, 341

276 8, 13, 14, 16, 26,
73, 229, 262, 336,
337, 340, 341

5, 8, 12, 13, 20, 67,
110, 118, 221, 236

7, 122, 219,
231, 241, 249

THR 72, 194, 256, 278, 319 256, 319 66, 81, 97, 116, 231 19, 209

H1.X SER 31, 33, 39, 92, 113, 154, 171 31, 33 33 49, 65, 66, 92, 113, 27, 31, 133

THR 55 101 12, 13, 55, 87
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Interphase phosphorylation occurs mainly on Ser resi-
dues while during mitosis, Thr phosphorylation takes
place [76]. The C-terminal domain of linker histone H1
not only makes up half of the linker histone molecule,
but also has the abundant lysine/arginine residues and
(S/T)PXK consensus sequences (phosphorylation motifs)
[77]. The relative contributions of linker histone H1

binding amino acids and the (S/T)PXZ or (S/T)PXK
motifs are examined. The presence of (S/T)PXK phos-
phorylation sites in histone H1.4 and H1.5 suggest that
these DNA-binding motifs have greater influence on the
binding affinities. The short C- terminal domain of lin-
ker histone H1.5 to the length of histone H1.2 results in
a significant reduction in the binding of the H1.5

Figure 2 Graphical presentation of potential for phosphate modification at Ser, Thr and Tyr residues in different subtypes of linker
histone H1 in Homo sapiens. Here blue vertical line show the phosphorylation potential of Ser, green vertical lines show the phosphorylation
potential of Thr residues, redlines show phosphorylation potential of Tyr residues, and gray horizontal lines show threshold for modification
potential in each subtype of linker histone H1.
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protein which demonstrates that the (S/T)PXK motifs
are not the sole determinants of the affinity of histone
H1 binding [78,79]. It is also very interesting to know
that phosphorylation of linker histone also found in N-
terminal regions where no (S/T)PXK consensus
sequence found and so there is no absolute cell cycle
specific site for phosphorylation [80]. Linker histone
phosphorylation mainly depends upon their specific sub-
types which occur during cell cycle at different residues.
Linker histone H1.5 phosphorylated in both the C- and
N-terminal regions while linker histone H1.2, H1.3 and
H1.4 exclusively phosphorylated in the C-terminal
regions [81].
Linker histones not only regulate gene expression and

transcription but also have roles in ageing, DNA repair
and apoptosis which suggest their importance in main-
taining chromatin and genomic integrity [82]. These
regulations are in response to changes in the ionic
environment by electrostatic interactions between DNA,
histone proteins, and free ions [6]. Decondensation of
chromatin mediated through phosphorylation of linker

histone that weakens the electrostatic interactions
between the negatively charged DNA and positively
charged C-terminal tails of linker histone subtypes and
vice versa [83]. During mitosis linker histone H1.1 phos-
phorylated on two residues Thr-152 and Ser-182 [79],
histone H1.2 phosphorylate on Ser-172, histone H1.3
phosphorylate on Ser-188, histone H1.4 phosphorylate
on three residues including two Ser residues 171 and
186, and one Thr residue 145 while linker histone H1.5
phosphorylate on four residues, two Ser 17 and 172, and
two Thr 137 and 154 [73]. Linker histone H1.T phos-
phorylates on three residues Ser-177, Thr-158 and 159
while H1.X also phosphorylates three residues Ser-2, 31
and 33 [83]. There is no experimental data available
about the phosphorylated sites of other two remaining
linker histone subtypes H1.F and H1.0 in mammals. It is
found that during interphase, phosphorylation of Ser
residues occurs while during mitosis Thr residues are
phosphorylated. This shows the dual effect of linker his-
tones phosphorylation during cell cycle; firstly during
interphase the phosphorylation of Ser residues of all

Table 2 Protein kinases invoved in phosphorylation of different subtypes of linker histone H1 in Homo sapiens

Histone
H1 Sub-
types

Enzymes for Phosphorylation HUMAN

PKC PKA CDC2 CDK5 GSK3 P38
MAPK

RSK PKG

H1.1 SER 33, 52, 104, 106, 115, 123, 145, 148, 164 41,123, 51, 52, 53 182 182 164,
165

11, 165

THR 3, 94, 101, 118, 127, 132, 142, 151, 161, 173, 199, 203 151 151

H1.2 SER 50, 57, 85, 101 103, 112, 149, 172, 187 35 50 37, 149

THR 30, 91, 98, 125 153, 164, 166, 145, 153, 30

H1.3 SER 51, 58, 86, 102 104, 113, 150, 173, 188, 204 36, 51, 188, 36,

THR 29, 92, 99, 154 167, 210 9, 17,146,
154,

146 17, 146,
179,

210

H1.4 SER 26, 50, 57, 85 101, 103, 112, 149, 171 26, 35, 50, 187 187 187 171 26, 35,
149,

THR 91, 98, 141, 153, 202 17, 145,
153,

17,

H1.5 SER 53, 88, 104, 106, 115, 172, 188, 60, 17, 172,
188

172 188

THR 24, 38, 94, 101 137, 154, 186, 38, 137, 154, 10, 137, 8, 38,
154,

H1.
O

SER 18, 44, 45, 55, 70, 91, 103, 123, 130, 170, 184, 185 18, 28, 44, 4, 6, 21, 18, 185

THR 22, 76, 109, 118, 134, 152, 161 89, 140 22, 109

H1.F SER 20, 73, 124, 211, 235, 243, 256, 260, 263, 268, 276, 306,
335, 336, 337, 341

42, 13, 14, 16, 21, 45, 11, 23, 276 73, 207, 243,
256

THR 17, 103, 194, 266, 278, 297 72, 266,

H1.T SER 35, 86, 89,105, 107, 111, 118, 121, 126, 128 137, 165,
187, 189, 204

42, 61, 86,
187

1, 33, 35, 44, 54,
111, 180

180 180 187

THR 102, 119, 131, 144, 148, 158, 162, 203 159 203

H1.
X

SER 27, 33, 39, 92, 113, 154, 204 39, 49, 66, 65, 31 31 39 39, 204

THR 87, 135, 140 135 189
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subtypes of linker histone H1 promotes DNA replica-
tion, transcription and gene regulation and then during
mitosis phosphorylation of Thr residues of linker his-
tone H1.4, H1.5 and H1.T may be required for recruit-
ing proteins that are involved in condensation
mechanism by unknown mechanism [84].
Our results of NetPhos K 1.0 for the prediction of

phosphorylation potential of all Ser and Thr residues
(which are experimentally known and described above
and also involved in phosphorylation in different sub-
types of linker histone H1) showed that these residues
are phosphorylated by different kinases during cell
cycle as shown in Table 2. These experimentally veri-
fied residues are conserved in all subtypes of linker
histones in mammals and we can conclude that these
phosphorylated sites can be present on linker histones
of other mammals “by similarity” where these phos-
phorylation sites are not yet experimentally known. O-
b-GlcNAc modification can occur on these Ser and
Thr residues where kinases are involved in phosphory-
lation as it is well known that kinases and OGT can
compete for same site modification [85]. This shows a
possibility for interplay between phosphorylation and
OGT on these residues. YinOYang 1.2 prediction
results had shown that all subtypes of linker histone
H1 of mouse have high potential for O-linked glycosy-
lation (Figure 3). The proteins modified by O-b-
GlcNAc are more concentrated on condensed

chromatin as compared with transcriptionally active
regions [86] thus the O-b-GlcNAc modification acts in
a reciprocal manner to phosphorylation. Chromatin
and several transcription factors are also found to be
modified by OGT [87].
The Ser and Thr residues of linker histone H1 which

are know to be experimentally phosphorylated and also
showed positive potential for O-b-GlcNAc modification
are Ser-188 of H1.3, Ser-186 and Thr-145 of H1.4, Ser-
17 of H1.5 and Ser-177 of linker histone H1.T. NetPhos
2.0 prediction results showed that there are many Ser
and Thr residues which are not yet experimentally veri-
fied but have high potential for phosphorylation, same
as; YinOYang 1.2 also predicted such type of residues to
have high potential for O-b-GlcNAc modification (Table
1). These predicted sites can also be phosphorylated by
different kinases (Table 2) and act as possible Yin Yang
sites for O-b-GlcNAc modification (Table 3). The
remaining Ser and Thr residues of linker histone sub-
types which are conserved in different species and either
known or predicted to be phosphorylated, showed nega-
tive potential for O-b-GlcNAc modification but are very
close to threshold value are known as false-negative Yin
Yang (FN-Yin Yang) sites (Table 3). These conserved
sites can be accessed by different kinases so that these
sites have also strong possibility for OGT access and
thus can also act as source of interplay for phosphoryla-
tion and O-b-GlcNAc [54-56]. The binding of DNA
with nucleosome can be increased with the mutation of
Ser and Thr phosphorylation sites to alanine residues at
different subtypes of linker histone H1 [22]. This phe-
nomenon has showed that these Ser and Thr residues
are involved in transcription and gene regulation during
cell cycle through interplay of phosphorylation and O-b-
GlcNAc modification.
The above discussion reveals that all the conserved

phosphorylated residues which show positive potential
for O-b-GlcNAc modification or predicted as FN-Yin
Yang sites as shown in Table3 may involved in modulat-
ing the functions through interplay between phosphory-
lation and O-b-GlcNAc modification among different
subtypes of linker histone H1. These linker histone H1
subtypes phosphorylated on specific Ser residues at N-
terminal region; enhance the process of DNA replica-
tion, transcription and gene regulation by decondensa-
tion of chromatin material during interphase. We
propose that this decondensation process can be
blocked by O-b-GlcNAc modification on these specific
Ser residues which may result in chromatin condensa-
tion and repress transcription of DNA. Secondly the
interplay between phosphorylation and O-b-GlcNAc
modification on Thr residues during mitosis may acti-
vate proteins which are involved in condensation
mechanism. Thus we can conclude that phosphorylation

Table 3 Proposed Ser/Thr residues for interplay of
phosphorylation and O-b-GlcNAc modification in
different subtypes of linker histone H1 in Homo sapiens

SUBSTRATE Proposed Yin Yang
sites

Proposed Fn-Yin Yang sites

H1.1 SER 103, 183 41, 51, 91, 104, 106, 182

THR 203 94, 203

H1.2 SER 187 -

THR - -

H1.3 SER 188 104

THR 146 92, 154

H1.4 SER 35, 186 54, 103, 112, 171

THR 17, 45, 202 91, 153

H1.5 SER 17 106, 115, 172

THR - -

H1.0 SER 21, 44, 97, 103, 123,
130

-

THR 134, 161 -

H1.T SER 54, 180, 204 42, 52, 107, 126, 128, 137, 140,
165, 187

THR 148, 158, 203 31

H1oo SER 8, 13 -

THR - -

H1.X SER -

THR - -
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in different subtypes of linker histone H1 on proposed
Ser/Thr residues is involved in decondensation of chro-
matin structure which leads to transcription regulation
and gene expression, whereas the O-b-GlcNAc modifi-
cation occurring on the same Ser/Thr residues may
involved in condensation of chromatin. As histone O-
GlcNAcylation is concomitant with DNA condensation,

hyperthermia has been shown to sensitize tumor cells to
radiotherapy. Although the mechanism for this sensitiza-
tion has not been elucidated, it has been suggested that
prior treatment with heat affects the cellular response to
DNA damage induced by ionizing radiation and changes
in histone O-GlcNAcylation might be another potential
mechanism for radio-sensitization [47].

Figure 3 Graphical representation of potential for O-b-GlcNAc modification in Ser and Thr residues in the different subtypes of linker
histone H1 in Homo sapiens. Green vertical lines show the potential of Ser/Thr residues for O-b-GlcNAc modification and light blue horizontal
wavy lines show threshold for modification potential.
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