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Abstract

Because centrosome amplification generates aneuploidy and since centrosome amplification is ubiquitous in
human tumors, a strong case is made for centrosome amplification being a major force in tumor biogenesis.
Various evidence showing that oncogenes and altered tumor suppressors lead to centrosome amplification and
aneuploidy suggests that oncogenes and altered tumor suppressors are a major source of genomic instability in
tumors, and that they generate those abnormal processes to initiate and sustain tumorigenesis. We discuss how

amplification and aneuploidy.

altered tumor suppressors and oncogenes utilize the cell cycle regulatory machinery to signal centrosome

The centrosome and cancer

It has well been established that centrosome amplifica-
tion is a distinct feature of most cancer cells. With this
observation came the hypothesis that this phenotype
can drive genomic instability and subsequent tumorigen-
esis. Abnormal centrosome biology, including centro-
some amplification and structural abnormalities
frequently occurs in most types of solid tumors, as well
some leukemias and lymphomas. Specifically, those can-
cer types include testicular germ cell, liposarcoma, adre-
nocortical, bronchial, bladder, cerebral primitive
neuroectodermal, cervical, prostate, breast, squamous
cell carcinomas of the head and neck, myeloma, and
T-cell leukemia [1-13]. Work done in haematopoietic
malignancies demonstrates that centrosome amplifica-
tion in myelomas correlates with a specific gene expres-
sion signature, and can serve as a prognostic factor in
patients [14].

One of the tumor types in which the relationship
between centrosome amplification and cancer is better
understood are breast cancers. The vast majority
(80-100%) of breast tumors display centrosome amplifi-
cation [15]. Breast adenocarcinoma cells have a much
higher frequency of centrosome defects, including
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amplification of number [15,16], increased volume and
supernumerary centrioles, when compared to normal
breast tissue [16]. Similar phenotypes can also be found
in pre-invasive in situ ductal carcinoma, and in pre-
malignant breast lesions, suggesting that these aberra-
tions occur early in breast carcinogenesis [4,15,17]. In
support of this data, molecular analyses have found that
the centrosome pathway is highly enriched for SNPs
that are associated with breast cancer risk [18]. In addi-
tion to being involved in initiation, having extensive
areas of centrosome amplification in breast tumors cor-
relates with axillary lymph node involvement, suggesting
that centrosome amplification also contributes to the
most malignant characteristics of breast cancer cells
[19]. Various rodent models have also given support to
the idea that centrosome amplification is involved in
mammary tumor initiation. For example, treatment of
female Wistar-Furth rats with MNU leads to mammary
tumorigenesis. MNU-induced preneoplastic lesions
exhibited DNA damage, chromosomal instability, and
supernumerary centrosomes [20]. Additionally, expres-
sion of Pinl in the mammary epithelial cells of trans-
genic mice leads to hyperplastic lesions harboring
centrosome amplification [21]. Also, our laboratory has
recently shown that inducible expression of K-Ras®'*P
results in mammary hyperplasias that harbor centro-
some amplification, thus demonstrating that centrosome
amplification precedes mammary tumorigenesis [22].
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Therefore, there are many similar correlative studies
that link centrosomal abnormalities and cancer, and
there are even more studies working to discover the
causal link and mechanism behind this well established
correlation. Indeed, the most direct evidence showing
that centrosome amplification is involved in tumori-
genesis was obtained in Drosophila. In a study that
specifically addressed the relationship between abnor-
mal centrosome biology and tumorigenesis, Basto et al.
assayed the long term consequences of an organism
having supernumerary centrosomes. Allotransplanta-
tion of Plk4/SAK over-expressing Drosophila neuronal
stem cells is sufficient to induce tumors in flies [23].
Also, transplanted cells expressing aur-a, plk, asl and
dsas4 resulted in tumors with varying efficiency [24].
Aurora A, one of the first oncogenes shown to induce
centrosome amplification in mammalian cells [25],
proved to be the most efficient at inducing tumors
[24]. These important experiments and observations
are the first step in defining the link between centro-
some amplification and tumors. This review will
address how the G1 phase Cdks normally regulate the
centrosome cycle, and how oncogenes and tumor
supressors deregulate those Cdks to signal centrosome
amplification.

The coordinated activities of G, phase Cdks,
centrosomal kinases and phosphatases regulate
the centrosome cycle

The centrosome duplication cycle

It can be argued that faithful segregation of chromo-
somes into daughter cells during mitosis is essential to
maintain genetic stability in most if not all organisms.
The interplay between centrosomes and the mitotic
microtubules results in the accurate segregation of chro-
mosomes into daughter cells. Following cytokinesis each
daughter cell receives only one centrosome; this centro-
some, like DNA, must duplicate only once prior to the
next mitosis. Centrosome duplication must be tightly
regulated, because the generation of more than one pro-
centriole per mother centriole results in centrosome
amplification [26,27] and contributes to tumorigenesis
[23,24]. The different phases of the centrosome cycle
were originally assigned based on the morphology of the
centriole pair throughout the cell cycle, as established
by electron microscopy [28]. More recently, establish-
ment of centriole duplication assays in Xenopus egg
extracts [29] and cultured mammalian cells [30,31]
remarkably improved the dissection of the centrosome
cycle. Additionally, the development of centrin-2-GFP
constructs has allowed following the centrosome dupli-
cation cycle relative to the different cell cycle phases in
real-time [32], and allows the assessment of unregulated
centrosome cycles [33].
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Laser centrosomal ablation and mutants of Chlamydo-
monas that are defective in centriole segregation showed
two pathways for centriole assembly, namely a template
pathway that requires preexisting centrioles to nucleate
new centriole assembly, and a de novo assembly pathway
that is normally turned off when centrioles are present
[34,35]. The templated pathway occurs as follows
[36,37]: Throughout early G; phase, normal cells have
one mature centrosome. During late G; and S phase,
the structure of the mother and daughter centrioles dif-
fers, the mother centriole contains appendages, whereas
the daughter centriole grows throughout these phases.
At the beginning of S phase, centriole duplication starts
with the appearance of short daughter centrioles, or
procentrioles, at right angles to the two original cen-
trioles [36,38]. Procentrioles are observed approximately
4 hours after the beginning of S phase [39]. This process
culminates in the acquisition of appendages by the
daughter centriole in G, [37] and the recruitment of
PCM [36,38]. By late G,, two mature centrosomes are
generated. The de novo assembly pathway is first
detected by the appearance of small centrin aggregates
at S phase [40]. Formation of new centrosomes subse-
quently occurs in two steps. First, approximately 5-8
hours after centrosome ablation, clouds of pericentriolar
material (PCM) containing y-tubulin and pericentrin
appear in the cell [41]. By 24 hours centrioles have
formed inside of the already well-developed PCM
clouds.

Recent studies identifying several centrosome-asso-
ciated proteins, protein kinases and phosphatases have
provided new insights into the regulation of centrosome
structure and function, including their ability to control
centriole duplication. Because unregulated expression of
proteins controlling the synthesis of daughter centrioles
can cause centriole reduplication and centrosome ampli-
fication, these proteins are potential targets of onco-
genes and altered tumor suppressors, and will be
thoroughly discussed in the following sections.

The G, phase Cdks coordinate the cell and centrosome
cycles

The centrosome duplication cycle must occur in coordi-
nation with the cell cycle; otherwise, unregulated centro-
some duplication may culminate in centrosome
amplification. Because DNA and centrosomes undergo
semi-conservative duplication once every cell cycle,
mammalian cells are equipped with a mechanism that
coordinates these two events, so that they are duplicated
only once [26]. This coordination is in part accom-
plished because cell cycle regulatory proteins also regu-
late the centrosome duplication cycle. The cell cycle is
regulated as follows: The temporal overexpression of
cyclins D, E, and A sequentially activates the G; phase
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Cdks, Cdk4/Cdké and Cdk2, to trigger entry and pro-
gression through S phase [42-51]. The G; phase Cdks
trigger the initiation of DNA duplication in part through
the phosphorylation of the retinoblastoma (Rb) protein
and the activation of the E2F transcriptional program
[49,52-73]. The Rb/E2F transcription program is essen-
tial for the correct expression and regulation of copious
genes involved in DNA replication, DNA repair, mitosis
and centrosome duplication [74-76].

Other studies have shown a close relationship between
cell cycle regulatory molecules and the regulation of
centrosome duplication. For example, ectopic expression
of the cyclin-dependent kinase inhibitors p21%?1/<ip!
and p27°"! blocked centrosome duplication in Xenopus
dividing embryos at the blastomere stage [77]. In sup-
port of those studies, inhibition of cyclin E/Cdk2 in
Xenopus egg extracts caused arrest in S phase and thus
prevented centriole re-duplication; re-introduction of
cyclin E/Cdk2 restored that reduplication [29]. It was
then suggested, using the same system, that inhibition
of Cdk2 activity prevents multiple rounds of centriole
duplication, but it does not prevent the initial round of
duplication [78]. However, there is other more recent
evidence suggesting that Cdk2 is also involved in the
initial round of centriole duplication. In Xenopus egg
extracts, separase causes disengagement of centrioles
during anaphase, and cyclin E/Cdk2 activity is required
for the synthesis of a daughter centriole following disen-
gagement [79].

Although various data obtained in Xenopus provided a
strong correlation between Cdk2 activity and centro-
some duplication, gene knockout experiments done in
mammalian cells uncovered a much different scenario.
Previous studies demonstrating that Cdk2-deficient mice
develop rather normally [80,81], raised the question of
the requirement of Cdk2 in other processes such as its
ability to regulate DNA and centrosome duplication
[80-82]. A surprising result was that cells derived from
these mice can proliferate and undergo centrosome
duplication with moderate defects [80-82], indicating
that the function of Cdk2 for proliferation and initiation
of the centrosome duplication can be readily and func-
tionally replaced by other Cdks or other centrosome
regulatory proteins. Likewise, ablation of the Cdk2 acti-
vating partners cyclin E1 and E2 in mouse embryonic
fibroblasts was not associated with any centrosomal
defects [83]. In support of studies done in mammalian
cells, various combinatorial knockdowns of two mitotic
cyclins (CycA, CycB, and CycB3), and reduction of the
dosage of the remaining cyclins in Drosophila embryo-
nic syncytial divisions allows centrosomes to duplicate,
while cells do not enter mitosis [84].

Recent experiments have revealed both redundancy, as
well as specificity, in regards to the G; phase Cdks
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regulating centrosome duplication in eukaryotes. For
example, chicken DT40 mutants were generated in
which an analog-sensitive mutant cdkI replaced the
endogenous CdkI. In those cells, Cdkl could be inacti-
vated using bulky ATP analogs [85]. In DT40 cells that
also lack Cdk2, Cdk1 activity is essential for DNA repli-
cation initiation and for centrosome duplication. Also,
the relative contributions of the G;-Cdks (Cdk2 and
Cdk4) to regulate normal centrosome duplication were
explored [86]. During these studies, experiments used to
measure the centrosome cycle at various time points
throughout the cell cycle in Cdk2”'~ and Cdk4'~ MEFs,
as well as transient down-regulation of Cdk2 and Cdk4
using RNA-mediated interference, uncovered distinct
centrosome cycle defects, suggesting that Cdk2 and
Cdk4 do not have redundant functions. For example,
while Cdk2 deficiency allowed the separation and dupli-
cation of centrosomes, absence of Cdk4 favored the
accumulation of cells with centrosomes that were slow
to separate and duplicate.

Targets of the G, phase Cdks

There are many structural proteins, kinases and phos-
phatases that regulate centrosome duplication both
dependent on and independently of the G; phase Cdk/
Rb pathway [87,88]. However, those regulatory mole-
cules acting independently of the G; Cdks will not be
covered in the scope of this review. One mode of regu-
lation of centrosome duplication carried out by the G;
phase cyclins/Cdks is the phosphorylation of Rb family
members, thus triggering de-repression and activation of
E2F-responsive genes [33,74-76]. E2F-dependent centro-
some regulatory targets target genes including cyclin D1
[89], cyclin E [74,90], cyclin A [76,91], Cdk2 [74], Nek2
[76], and RanBPM [76]. However, this mode of regula-
tion remains poorly understood. A summary of known
E2F targets that are known to be involved in the regula-
tion of the centrosome cycle is presented in Figure 1.

A mode of regulation that is more clearly understood
is the ability of the G; phase Cdks to phosphorylate cen-
trosome regulatory targets modulating centrosome
duplication. For example, nucleophosmin (NPM), also
known as B23 [92], numatrin [93], or NO38 [94], was
originally identified as a nucleolar phosphoprotein found
at high levels in the granular regions of the nucleolus.
NPM is a negative suppressor of licensing the centro-
some cycle, and a suppressor of centrosome amplifica-
tion. This was demonstrated using a genetic approach;
haploinsufficiency of NPM results in unregulated cen-
trosome duplication and centrosome amplification [95].
Conversely, microinjecting an antibody against NPM
results in the suppression of centrosome duplication
[96]. Licensing is modulated by G; phase Cdks through
phosphorylation and inactivation of NPM, as expression
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Figure 1 The G, phase Cdks and the E2Fs regulate various steps in the centrosome duplication cycle. Various evidence suggests that the
G; phase Cdks directly phosphorylate NPM, CP110 and Mps1 to regulate centrosome licensing and duplication. The dotted line reflects the fact
that even though Plk4 is not a direct target of Cdk2, introduction of a dominant-negative Cdk2 construct renders it ineffective in triggering
centriole reduplication. The figure reflects how the E2F activators E2F1, E2F2 and E2F3 influence the centrosome duplication cycle by controlling
the transcriptional levels of cyclins E, A, D, and Cdk2. The figure also reflects how E2F3 and E2F4 repress cyclin E and Nek2 to influence the

centrosome cycle.
A

of NPM/B23 mutants whose phosphorylation sites were
either deleted (NPMA186-239) or replaced with a non-
phosphorylatable residue (NPM T199A) resulted in sup-
pression of centrosome duplication. NPM is a primary
target of Cdk2/cyclin E during the initiation of centro-
some duplication (Figure 1) [96]. Cdk2/cyclin A is also
known to phosphorylate NPM/B23 specifically on
Thr199 in vitro at a similar efficiency with Cdk2/cyclin
E [97]. In addition, Cdk4/cyclinD also phosphorylates
NPM on Thr 199 at mid/late G; phase of the cell cycle
[86]. NPM associates specifically with unduplicated cen-
trosomes and dissociates from centrosomes upon
Thr199 phosphorylation by Cdk2/cyclin E at the late G;
phase [96]. It is believed that the continual presence of
active Cdk2/cyclin A may be responsible for preventing
re-association of any cytoplasmic NPM/B23 to centro-
somes during S and G, phases. During mitosis, NPM/
B23 re-associates with the centrosomes and the spindle
poles [96,98]; the phosphorylation of NPM/B23 by
Cdkl/cyclin B on Thr 234 and/or Thr 237 sites
may play a role in re-association of NPM/B23 with

centrosomes during mitosis [97]. More recently, it has
been shown that NPM is also downstream of other sig-
naling pathways, as phosphorylation of NPM by Plk2 is
critical to centrosome duplication [99]. Also, NPM pre-
vents centrosome amplification by forming a complex
with BRCA2 and ROCK2 [100].

Some of the first evidence showing that centrosomal
kinases are responsible for various steps in the centro-
some duplication cycle was obtained from studies on
the spindle pole body (SPB), the centrosome-like orga-
nelle in yeast. Like the centrosome in other organisms,
the SPB duplicates only once per cell cycle commencing
in Gy, an event necessary for the formation of a normal
bipolar spindle [101]. The Mps1l (mono polar spindle 1)
family was first described in budding yeast based on its
mutant phenotype, the formation of a monopolar spin-
dle as a consequence of the failure to duplicate the SPB
[102]. Localized to SPBs, Mpsl acts to control their
assembly [103]. In mammalian cells, a homologous pro-
tein Mps-1 is also involved in centriole duplication.
Normally, NIH3T3 cells arrested in S phase undergo
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only a single round of centrosome duplication [104]. In
contrast, overexpression of mMpslp in these cells
induced centrosome reduplication, and transfection of
mMps1-KD (kinase dead) in these and other cell types
(CHO, U20S) blocked centrosome duplication. The
turnover of Mpsl kinases through protein degradation
may be an important mechanism for their control. For
example, stabilization of mMpslp within centrosomes is
thought to be achieved by direct phosphorylation of
mMpslp by Cdk2 (Figure 1) [104], as overexpression of
cyclin A or brief proteasome inhibition increases the
centrosomal levels of Mps1, whereas depletion of Cdk2
leads to the proteasome-dependent loss of Mpsl from
centrosomes [105]. Also, when a Cdk2 phosphorylation
site within Mpsl (T468) is mutated to alanine, Mpsl
cannot accumulate at centrosomes or participate in cen-
trosome duplication. In contrast, phosphomimetic muta-
tions at T468 or deletion of the region surrounding
T468 prevent the proteasome-dependent removal of
Mpsl from centrosomes in the absence of Cdk2 activity.
Moreover, cyclin A-dependent centrosome reduplication
requires Mpsl. Although Mpsl was reported to be
involved in centrosome duplication with Cdk2 as the
downstream regulator [104], another report concluded
that human Mps1 does not localize to centrosomes and
is not required for the ability of human U20S cells to
undergo centrosome reduplication [106]. Interestingly, it
was recently shown that human Mpsl (hMps1) localizes
to centrosomes after the staining of a variety of human
cell types with an antibody specific to hMps1 [107].
These studies also demonstrated that overexpression of
kinase dead hMps1 blocked centrosome duplication in
NIH3T3, HeLa, RPEland U20S, and that transfection of
hMpsl1 in U20S cells accelerated centrosome reduplica-
tion. They also showed that siRNA silencing of hMpsl
in HeLa cells induced failures in both centrosome dupli-
cation and normal progression of mitosis.

Cdk2 is responsible for regulating other proteins
involved in centrosome duplication, although it is still
not clear how Cdk2 controls their activity. For example,
in mammalian cells, Plk4 cooperates with Cdk2, CP110
and Hs-SAS6 to induce centriole duplication [108].
Although Plk4 has not been reported to be a direct
Cdk2 phosphorylation substrate, Plk4’s centriole dupli-
cation activity is inefficient in the presence of a Cdk2
dominant-negative construct (Figure 1). Also, a screen
for various substrates of Cdk2 revealed that CP110 is a
target of Cyclin E/Cdk2, Cyclin A/Cdk2 and of Cyclin
B/Cdc2 (Figure 1) [109]. CP110 is regulated by the cell
cycle, as it is induced at G;/S phase, and its mRNA
levels are suppressed after S phase. Down-regulation of
CP110 with siRNA suppressed centriole reduplication in
HU-treated U20S cells; also, cells expressing CP110
lacking Cdk phosphorylation sites, or down-modulated
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CP110 also displayed centrosome separation. However,
even though these studies revealed that CP110 is
involved in centriole duplication and centrosome separa-
tion, the individual contribution of Cdk2 and Cdc2 sites
in regulating those processes remains to be addressed.

Deregulated G; Cdks, centrosome amplification
and cancer

Oncogene-dependent centrosome amplification correlates
with hyperactive Cdk2 and Cdk4

Because the centrosome cycle is regulated in part by cell
cycle machinery, when the cell cycle becomes deregu-
lated by oncogenes and altered tumor suppressors, the
centrosome can also be susceptible to deregulation. This
can ultimately lead to centrosome amplification, aneu-
ploidy, and unregulated cell cycling [110,111]. Mounting
evidence is showing that uncontrolled G; phase cyclin/
Cdk complexes affect two major steps in the centrosome
cycle: licensing and centriole duplication.

Alterations to the centrosome duplication machinery
can lead to centriole reduplication, defined as the gen-
eration of multiple procentrioles from one mother cen-
triole; this often results in centrosome amplification.
Deregulated centriole duplication and centrosome
amplification was addressed using laser microsurgery
to show that physical removal of all over-duplicated
daughter centrioles induces reduplication of the
mother in S-phase-arrested cells CHO cells [112]. In a
subset of mammalian cells lacking checkpoint controls,
including Chinese hamster ovary (CHO) cells [30], or
P53 mouse embryonic fibroblasts [86], hydroxyurea
(HU) treatment arrests the cells in S phase while cen-
trosome duplication continues and results in centriole
reduplication. In contrast, in CHO cells treated with
mimosine, both the cell and centrosome cycles are
arrested. Using that system, experiments showed that
Cdk2 activity was higher in HU-treated cells than in
mimosine-treated cells, suggesting a strong correlation
between increased Cdk2 activity and excessive cen-
triole duplication [30]. Also, more recent studies have
shown that CHO cells arrested in G; with mimosine
can also assemble more than four centrioles, but the
extent of centrosome amplification is decreased com-
pared to cells that enter S-phase and activate the
Cdk2-cyclin complex [113]. In mammalian somatic
cells, centrosome reduplication is attributed to the
Cdk2/cyclin A complex, since overexpression of cyclin
A in cells arrested in S phase (by the expression of
p16, non-phosphorylatable Rb, or in cells treated with
HU), triggers centriole reduplication, while a Cdk2
dominant negative blocks reduplication [31]. Also,
ectopic expression of E2F2 or E2F3 can relieve that
block, suggesting that centriole re-duplication is in
part mediated downstream of Cdk2 and Rb.
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The first altered tumor suppressor shown to be
directly associated with centrosome amplification was
p53, as its genetic deletion in mouse embryonic fibro-
blasts promoted that abnormal process [114]. Similarly,
alterations that affected p53 function resulted in centro-
some amplification. For example, MDM2, an E3 ubiqui-
tin ligase that promotes degradation of p53 [115],
associates with centrosome amplification in squamous
cell carcinomas of the head and neck (SCCHN) [5].
Also, the E6 viral protein from the HPV16 virus, which
inactivates p53, causes centrosome amplification [116].
One of the most important functions of the p53 path-
way is to trigger cell cycle arrest to allow repair of DNA
damage, or cell death if the damage is unrepaired [117].
p53 exerts some of its cell cycle regulatory functions
through promoting the transcription of p21¥a1/CIP1 4
CKI that negatively regulates both Cdk2 and Cdk4 activ-
ities [118,119]. p53 prevents centrosome amplification
through direct binding to the centrosome, and also in
part through its ability to regulate p21¥*/<I"1 [120].
Several groups have presented data supporting a role of
p21WA/CIPL i centrosome biology. For example, intro-
duction of p21¥ /<1 into p537° cells harboring cen-
trosome amplification restored normal centrosome
duplication and abrogated centrosome amplification
[121]. Moreover, knock-down of p21waﬂ/cmlin murine
myeloblasts stimulates excessive centriole numbers in
the presence of only one mature centriole [122] and
p21W3/CIPL ]l human hematopoietic cells display ele-
vated frequencies of centrosome amplification [123].

Consequent to the discovery that centrosome amplifi-
cation in p53-null cells correlated with deregulated
Cdk2 activity, many other studies began showing similar
correlations. For example, when E2F3a/b, transcription
factors critical to S phase entry, are ablated, elevated
cyclin E-dependent Cdk2 activity correlates with consti-
tutive centriole separation, duplication, and centrosome
amplification (Figure 1) [33]. It is to note that this func-
tion is specific to E2F3-null cells, as MEFs lacking E2F1,
E2F2, E2F4 or E2F5 do not display centrosome amplifi-
cation. Also, the expression of the centrosome-targeting
region of CG-NAP (a centrosome and Golgi-localized
protein), causes centrosome amplification by anchoring
excess amount of cyclin E-cdk2 to centrosomes [124].
In another correlative study disruption of Skp2, a sub-
strate recognition component of an Skpl-Cullin-F-box
protein (SCF) ubiquitin ligase, results in increased cyclin
E, p27, and centrosome amplification [125]. Another
example is ECRG2, a novel tumor suppressor gene
which localizes to centrosomes; its depletion destabilizes
p53, leading to down-regulated p21, increased cyclin
E/Cdk2 activity, and centrosome amplification [126]. On
the other hand, there are proteins that prevent excessive
centriole duplication triggered by de-regulated G; phase
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cyclins. For example, the Orcl protein, a subunit of the
origin recognition complex (ORC) that is a key compo-
nent of the DNA replication licensing machinery, con-
trols centriole and centrosome copy number in human
cells [127]. Cyclin A promotes Orcl localization to cen-
trosomes, where Orcl prevents Cyclin E-dependent
reduplication of both centrioles and centrosomes.
Following the discovery that tumor suppressors main-
tained normal centrosome numbers, various laboratories
showed that certain protooncogenes displayed the same
activity. Some of the first observations that protoonco-
genes, including tyrosine kinase receptors, controlled the
centrosome cycle were made in CHO cells cultured in
the presence of hydroxyurea (HU) or aphidicolin. Addi-
tion of dialyzed serum to these cells stopped centriole
reduplication, while addition of EGF re-initiated the pro-
cess [128]. Additionally, when PTEN"" neural precursor
cells were infected with retrovirus encoding constitu-
tively active EGFRVIII, centrosome amplification, geno-
mic instability and glial tumors developed [129].
Furthermore, it has been shown that other EGFR family
members may play a role in this story. Her2/neu
(ErbB2) was first described as an oncogene when iso-
lated from neuroglioblastomas that developed in rats
treated with ethylnitrosourea (ENU) [130]. Her2 muta-
tions are relatively rare in human cancers; however wild
type ErbB2 is amplified at the genomic level or overex-
pressed at the protein level [131] in approximately 30%
of invasive ductal breast cancers [132]. It has been
shown that overexpression of this protein correlates
with tumor size, spread to lymph nodes, high grade,
increased percentage of S phase cells, and aneuploidy
[132]. A study of mice expressing activated Her2/neu in
the mammary epithelium demonstrated its ability to
induce chromosomal aberrations as well as centrosome
amplification in cell lines derived from primary tumors
[133]. Also, analysis of fine-needle aspirations of the
breast found a significant correlation between the per-
centage of cells with centrosome amplification, over-
expression of HER2/neu and negative ER status [15].
The molecules downstream of Her2 can also become
deregulated upon over-expression. Her2 induces cyclin
D1 through the Ras/Rac/Rho pathway in which the
ERK, JNK and p38MAPK cascades are distal mediators.
Another oncogene that has been associated with cen-
trosome amplification is Ras. A Pubmed search for “Ras
and Cancer” returns almost twenty thousand hits for
articles and reviews, most discussing the oncogenic
potential of Ras and the many cellular phenotypes that
it affects. Probably one of the most thoroughly studied
of the many Ras-mediated pathways is the MAP kinase
cascade, a critical signaling cascade regulating cell prolif-
eration by exerting control over the cell cycle. It has
been shown that constitutive activation of MAPK
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induces defects in the normal mitotic processes of the
cell [134]. For example, transduction of v-ras or v-mos
into NIH 3T3 cells induced centrosome amplification
and inhibition of this phenotype was possible with the
introduction of MAPK inhibitors [134]. A study focusing
on genomic instability in thyroid PCCL3 cells harboring
wt p53, examined the effects of H-RAS"'? and activated
MEKI1 and found that both induced centrosome amplifi-
cation and chromosome misalignment [135]. Likewise,
expression of the H-Ras®'?" or the H-Ras®'*Y & c-Myc
oncogenes in non-transformed MCF10A human mam-
mary epithelial cells results in elevated frequencies of
centrosome amplification [22]. Activation of this path-
way is relevant in vivo, as ectopic expression of the K-
Ras“'*P oncogene in mouse mammary epithelial cells
resulted in centrosome amplification that greatly pre-
ceded tumorigenesis [22].

The extracellular regulated kinase (ERK) cascade, a
major component of the MAPK pathway, is a critical
signaling cascade, regulating cell proliferation by exert-
ing control over the cell cycle. MEK1 and MEK2, two
kinases upstream of ERK, have been shown to regulate
cell cycle progression in two distinct ways [136]. Loss of
MEK2 results in a mitotic delay, perhaps due to a
reduction in ERK phosphorylation. When MEK2 is
knocked down using siRNA in HCT116 colon cancer
cells, cyclin D1 levels increase, leading to hyperactive
Cdk4/6 and hyperphosphorylation of nucleophosmin
(NPM); this hyperphosphorylation was independent of
Cdk2. Hyperphosphorylation of NPM at T199 was
accompanied by centrosome amplification and the
appearance of multipolar spindles [136], making a case
for Cdk4 mediation of NPM phosphorylation. In
another study associating Ras/MAPK to centrosome
amplification, the Hepatitis B virus (HBv) was shown to
activate various signaling pathways, one of which is the
Ras-Raf-MAPK [137]. The hepatitis B virus X oncopro-
tein HBx, is a small oncoprotein that is required for
viral replication and has been associated with HBV-
mediated hepatocellular carcinoma. Yun et al. discov-
ered that the Ras-MAPK pathway is the downstream
effector of HBx protein involved in abnormal amplifica-
tion of centrosomes [137]. Suppression of the ERK path-
way with inhibitors, and the introduction of dominant
negative mutants of Ras and Mek reduce the frequency
of supernumerary centrosomes in HBx expressing
human Chang liver cells, thus further clarifying the role
of Ras and the MAPK pathway in the HBx mediated
induction of centrosome amplification [137].

Transcription of the cyclin D1 gene and subsequent
interaction with its kinetically active partner, Cdk4,
depends on receptor mediated Ras signaling. Various
upstream and downstream effectors of the MAPK path-
way up-regulate the transcription of cyclin DI so that
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when it is bound to Cdk4 it is able to sequester p27*P!
and thus activate cyclin E-Cdk2 complex [138]. Upon
this activation, both cyclin-Cdk complexes are free to
phosphorylate RB family proteins and cells may progress
from G; to S phase of the cell cycle [138]. In normal
cells mitogenic growth factors are responsible for indu-
cing cyclin D1; however, over-expression of cyclin D1,
independent of growth factor signaling, is a common
feature of many tumors [138]. For example, a great
majority of small cell lung cancers, breast cancers, glio-
blastomas and mantle cell lymphomas have over-expres-
sion of cyclin D1 or its catalytic partner, Cdk4. In fact
aberrant over-expression of cyclin D1 occurs in 70-100%
of breast tumor cell lines and most breast cancers and
seems to be required for neu and Ras-induced mam-
mary epithelial transformation [89]. Along the same
line, cyclin D and Cdk4 are required for neu and ras
induced mammary tumorigenesis [139,140], demonstrat-
ing that the cyclin D1/Cdk4 complex is needed for
mammary transformation. Unregulated expression of
cyclin D1 is associated with chromosomal abnormalities
and it has been documented that transient expression of
cyclin D1 in hepatocytes and human mammary epithe-
lial cells induces centrosome amplification [141]. A
striking feature of this study demonstrated that centro-
some abnormalities persist in a small percentage of the
cells for four months after cyclin D1 is no longer
expressed [141]. Interestingly, hepatocytes from Cdk2”"
mice are refractive to cyclin D1-dependent centrosome
amplification, suggesting that in some contexts, either
cyclin D1 uses Cdk2 to trigger centrosome amplifica-
tion, or that Cdk2 is a downstream target of cyclin D/
Cdk4 [142].

In support of the studies linking cyclin D1/Cdk4 with
centrosome amplification, one of the primary events
associated with initiation of mammary tumorigenesis is
the loss of the Cdk4/Cdk6-specific inhibitor p16™ **
through hypermethylation of its promoter, which de-
regulates the centrosome cycle and lead to a moderate
increase in frequencies of centrosome amplification
[143-145]. Concomitantly, the y-tubulin gene is ampli-
fied [146]. Likewise, silencing the histone H3 lysine 9
methyltransferase G9a leads to centrosome amplifica-
tion, reportedly by down-modulation of gene expression,
including that of p16™*** [147]. Thus, it has been pos-
tulated that loss of pl6 expression coupled with
increased y-tubulin contributes to centrosome amplifica-
tion and breast cancer progression.

Direct evidence demonstrating involvement of the G,
phase Cdks in centrosome amplification

Although the evidence associating hyperactive G; phase
cyclin/Cdks and centrosome amplification is convincing,
it is nevertheless correlative. This is due to the fact that
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some of the protooncogenes, tumor suppressors, and
transcription factors that control G; phase Cdk activ-
ities, such as Her2, Ras, E2f3 and p53, also regulate a
plethora of other gene products [74,76,148,149]. Table 1
lists a subset of oncogenes and altered tumor suppres-
sors, and the G1 phase Cdk they may hyperactiate to
signal centrosome amplification. How do G; phase-
CDKs signal oncogene-dependent centrosome amplifica-
tion? Research showing that inhibition of specific Cdks
blocks centriole reduplication was the first direct evi-
dence of a relationship between Cdks and centrosome
amplification. In HU-arrested cells, cells treated with
butyrolactone I or roscovitine -inhibitors of Cdk2, Cdc2
and Cdk5 activity- [150,151], and cells treated with the
Cdk2/Cdk4 inhibitor p21¥3/<iP! centriole reduplication
was blocked [30]. Following these initial experiments,
combinatorial cyclin E/A/p53 gene knockout analyses
demonstrated that the G; phase cyclins and Cdks play
pivotal roles in signaling centrosome amplification. For
example, in p53”" cells arrested in early S phase, cyclin
E, but not cyclin A, is important in centriole reduplica-
tion and centrosome amplification, but in the absence of
cyclin E, cyclin A can drive the abnormal phenotype
[152]. In p53”" cells, Cdk2 mediated HU-induced cen-
triole reduplication [153]. In another study, centriole
reduplication triggered by the peptide vinyl sulfone pro-
teasome inhibitor Z-L(3)VS is dependent on cyclin E/
Cdk2, as well as Polo-like kinase 4 [154]. Furthermore,
inhibitors of Cdk2, dominant negative mutants of Cdk2
and DP1, siRNA-mediated silencing of Cdk2, or genetic
deletion of Cdk2 abrogate centrosome amplification
triggered by ectopic expression of E7 [82]. These studies
provided direct support to the role played by E2Fs and
Cdk2 in centrosome amplification associated with the
inactivation of Rb by its conditional loss [155], the acute

Table 1 Oncogenes and inactive tumor suppressors and
the G, phase Cdk they may deregulate to signal
centrosome amplification

Genetic alteration Deregulated Cdk Reference
Oncogenes
Cyclin D1 Cdk2, Cdk4 [141,142]
ErbB2 Cdk4 [139]
Ras Cdk4 [22,140]
Tumor Suppressors
E2F3a/b Cdk2 [33]
MEK2 Cdk4, Cdk6 [136]
p16!NA Cdk4, Cdké [143,145]
p21"afl/cIPl Cdk2, Cdk4 [118,119,121,122]
p53 Cdk2, Cdk4 [86,120,121]
Skp2 Cdk2 [125]
Rb Cdk2 [82]
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loss of pRb by adenovirus carrying shRNA against Rb
[156], or through the expression of the E7 viral protein
from the HPV16 virus [116].

Even though most evidence demonstrated that Cdk2
was the central mediator of oncogene-induced centro-
some amplification, our group demonstrated that Cdk4
is also an important mediator. For example, genetic
ablation of Cdk2 and Cdk4 abrogated centrosome
amplification in p53-null cells [86] by restricting NPM-
dependent excessive licensing of the centrosome cycle,
as well as by restricting centriole reduplication in p53-
null mouse embryonic fibroblasts treated with HU. Also,
we showed that siRNA-mediated silencing of cyclin D1
or Cdk4 suppressed H-Ras-“'? or H-Ras“'*"/c-Myc-
dependent centrosome amplification in MCF10A human
mammary epithelial cells, while inhibition of cyclin E or
cyclin B did not prevent centrosome amplification [22].

An important molecule downstream of Cdk2 that
restricts centrosome separation and duplication is
NPM phosphorylated at residue T199 [96,97,157].
Reasoning that this mode of deregulation was an
important intermediate to centrosome amplification,
our group showed that when E2F3a/b is ablated, cyclin
E/Cdk2 activity is elevated, leading to the hyperpho-
sphorylation of NPM*'*? [33]. Hyperphosphorylation
of NPM™*? by Cdk2 strongly correlated with constitu-
tive centrosome duplication cycle and centrosome
amplification. The role of NPM as a negative regulator
of centrosome duplication was confirmed genetically
through a gene knockout approach, as cells heterozy-
gous for NPM displayed centrosome amplification [95].
Silencing of NPM in p53” p19Arf’"Mdm2”/~ MEFs also
resulted in centrosome amplification [158]. In the
same system, ectopic expression of NPM T84 could
not rescue the centrosome amplification phenotype in
p53”/"p19Arf’"Mdm2”~ MEFs. In contrast, our group
used a similar mutant of NPM, NPM 1994 (which can-
not be phosphorylated by Cdk2 or Cdk4) to demon-
strate that this mutant prevented centrosome
amplification in p53-null cells to the same extent as
ablated Cdk2 or Cdk4 [86]. These experiments demon-
strated that the G; phase Cdks signal centrosome
amplification in p53-null cells through NPM. In terms
of other mechanisms linking the G; phase Cdks and
centrosome amplification, the Fry group demonstrated
that nuclear export is required for centriolar satellite
formation and centrosome overduplication in p53-null
cells, with export inhibitors causing a Cdk2-dependent
accumulation of nuclear centrin granules [153]. This
group proposed an interesting model of regulation of
centriole reduplication: Centrosome precursors arise in
the nucleus, providing a novel mechanistic explanation
for how nuclear Cdk2 can promote centrosome over-
duplication in the cytoplasm.
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Other than the hyperphosphorylation and inactivation
of NPM and the nuclear accumulation of centrin inter-
mediates, processes that are dependent on Cdk2, the
centrosomal targets controlled by oncogenes and altered
tumor suppressors directly responsible for centrosome
amplification are largely unknown. The sole exception is
Nek2; it has been observed that silencing Nek2 abro-
gated centrosome amplification in human mammary
epithelial cells expressing H-Ras“'*" and H-Ras“'*"/c-
Myc [22]. Speculatively, we can propose the following
model: Oncogene-activated G; phase Cdks signal cen-
trosome amplification through the stabilization of cen-
trosome duplication kinases such as Plk4 or Mpsl, or
through E2F-dependent transcriptional deregulation of
those centriole duplication kinases (Figure 1).

Conclusions and future directions

Because centrosome amplification is present in the vast
majority of human tumors, and since supernumerary
centrosomes may generate aneuploidy and genomic
instability suggests that centrosome dysfunction is a
potentially important contributor to cancer biogenesis.
However, we are far from demonstrating a causal
relationship between centrosome amplification and
mammalian tumorigenesis. The observations that various
pre-malignant lesions harbor centrosome amplification
first mapped centrosome amplification to tumor initia-
tion. Recent evidence demonstrating that low level aneu-
ploidy caused by interference with spindle assembly
components causes various tumors in mouse models
[159,160], together with observations that merotelic
attachments cause that same kind of aneuploidy
[161,162] helped to bridge the gap between the correla-
tion of centrosome amplification, aneuploidy and tumor
initiation. Furthermore, two recent manuscripts showed
that ectopic expression of centrosome regulatory proteins
leads to benign tumors in transplanted Drosophila brain
stem cells, suggesting for the first time a direct relation-
ship between centrosome amplification and tumorigen-
esis [23,24]. However, unlike mammalian cancers, which
are grossly aneuploid, the benign tumors in Drosophila
harboring centrosome amplification displayed neither
aneuploidy nor detectable gross chromosomal aberra-
tions [24]. The classic Weinberg experiments may help
shed some light on the kind of genomic changes that
may be needed to transform a human epithelial cell. For
example, they showed that transformation of a primary
human mammary epithelial cell required ectopic expres-
sion of telomerase to protect from senescence induced by
telomere shortening [163]. Ectopic expression of Ras and
c-Myc as well as inactivation of p53 and Rb (via the SV40
large T antigen) was also required for transformation,
suggesting that some cooperation is necessary to trans-
form primary cells. It is to note that most of the genes
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that were required to transform those mammary epithe-
lial cells affect centrosome amplification, or allow the
generation of chromosome breaks and recombination
[22,134,135,155,164-168]. This suggests that the centro-
some amplification and genomic instability triggered by
those oncogenes, combined with their ability to affect
proliferation provide those cells selective advantages to
initiate mammary tumors. Future experiments are
needed to understand how centrosome amplification
transforms cells, and whether it eventually causes ectopic
proliferation and decreases apoptosis, or whether it con-
tributes to tumorigenesis by altering other processes,
such as the orientation of cells within a tissue, a concept
postulated by the Gonzalez group in their Drosophila
model [24]. Another pressing issue is to establish, using
proteomics and transcriptomics, the centrosomal targets
that are deregulated by various oncogenic and altered
tumor suppressive pathways. This will allow for
the ectopic expression or inactivation of various
centrosome regulatory proteins in primary cell lines to
more directly assess the role of centrosome amplification
in transformation.

Authors’ contributions

MKH participated in the design, research, writing and editing of this review.
AA participated in the research and writing of this review. HS conceived the
review and participated in the design, research, writing, and editing of this
review. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 23 December 2010 Accepted: 27 January 2011
Published: 27 January 2011

References

1. Lothschutz D, et al: Polyploidization and centrosome hyperampilification
in inflammatory bronchi. Inflamm Res 2002, 51(8):416-22.

2. Zyss D, Gergely F: Centrosome function in cancer: guilty or innocent?
Trends Cell Biol. 2009, 19(7):334-46.

3. Pihan GA, et al: Centrosome defects and genetic instability in malignant
tumors. Cancer Research 1998, 58(17):3974-85.

4. Pihan GA, et al: Centrosome abnormalities and chromosome instability
occur together in pre-invasive carcinomas. Cancer Res 2003, 63(6):1398-404.

5. Carroll PE, et al: Centrosome hyperamplification in human cancer:
chromosome instability induced by p53 mutation and/or Mdm2
overexpression. Oncogene 1999, 18(11):1935-44.

6. Duensing S, Munger K: Centrosomes, genomic instability, and cervical
carcinogenesis. Crit Rev Eukaryot Gene Expr 2003, 13(1):9-23.

7. Chng WJ, et al: Clinical implication of centrosome amplification in
plasma cell neoplasm. Blood 2006, 107(9):3669-75.

8. Nitta T, et a- Centrosome amplification in adult T-cell leukemia and
human T-cell leukemia virus type 1 Tax-induced human T cells. Cancer
Sci 2006, 97(9):836-41.

9. Yamamoto Y, et al: Centrosome hyperamplification predicts progression
and tumor recurrence in bladder cancer. Clin Cancer Res 2004,
10(19):6449-55.

10.  Weber RG, et al: Centrosome amplification as a possible mechanism for
numerical chromosome aberrations in cerebral primitive
neuroectodermal tumors with TP53 mutations. Cytogenet Cell Genet 1998,
83(3-4):266-9.

11. Roshani L, et al: Aberrations of centrosomes in adrenocortical tumors. Int
J Oncol 2002, 20(6):1161-5.


http://www.ncbi.nlm.nih.gov/pubmed/12234059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12234059?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19570677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19570677?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9731511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9731511?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12649205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12649205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10208415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10208415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10208415?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12839094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12839094?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16373658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16373658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16805820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16805820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15475431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15475431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10072601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10072601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10072601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12011993?dopt=Abstract

Harrison et al. Cell Division 2011, 6:2
http://www.celldiv.com/content/6/1/2

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Perucca-Lostanlen D, et al: Distinct MDM2 and P14ARF expression and
centrosome amplification in well-differentiated liposarcomas. Genes
Chromosomes Cancer 2004, 39(2):99-109.

Mayer F, et al: Aneuploidy of human testicular germ cell tumors is
associated with amplification of centrosomes. Oncogene 2003,
22(25):3859-66.

Chng WJ, et al: The centrosome index is a powerful prognostic marker in
myeloma and identifies a cohort of patients that might benefit from
aurora kinase inhibition. Blood 2008, 111(3):1603-9.

Guo HQ, et al: Analysis of the cellular centrosome in fine-needle
aspirations of the breast. Breast Cancer Res 2007, 9(4):R48.

Lingle WL, et al: Centrosome hypertrophy in human breast tumors:
implications for genomic stability and cell polarity. Proc Natl Acad Sci USA
1998, 95(6):2950-5.

Lingle WL, et al: Centrosome amplification drives chromosomal instability
in breast tumor development. Proc Natl Acad Sci USA 2002, 99(4):1978-83.
Olson JE, et al: Centrosome-related genes, genetic variation, and risk of
breast cancer. Breast Cancer Res Treat 2011, 125(1):221-8.

Schneeweiss A, et al: Centrosomal aberrations in primary invasive breast
cancer are associated with nodal status and hormone receptor
expression. Int J Cancer 2003, 107(3):346-52.

Goepfert TM, et al: Loss of chromosomal integrity drives rat mammary
tumorigenesis. Int J Cancer 2007, 120(5):985-%4.

Suizu F, et al: Pin1 regulates centrosome duplication, and its
overexpression induces centrosome amplification, chromosome
instability, and oncogenesis. Mol Cell Biol 2006, 26(4):1463-79.

Zeng X, et al: The Ras oncogene signals centrosome amplification in
mammary epithelial cells through cyclin D1/Cdk4 and Nek2. Oncogene
2010, 9;29(36):5103-12.

Basto R, et al: Centrosome amplification can initiate tumorigenesis in
flies. Cell 2008, 133(6):1032-42.

Castellanos E, Dominguez P, Gonzalez C: Centrosome dysfunction in
Drosophila neural stem cells causes tumors that are not due to genome
instability. Curr Biol 2008, 18(16):1209-14.

Zhou H, et al Tumour amplified kinase STK15/BTAK induces centrosome
amplification, aneuploidy and transformation. Nat Genet 1998, 20(2):189-93.
Fukasawa K: Centrosome amplification, chromosome instability and
cancer development. Cancer Lett 2005, 230(1):6-19.

Kleylein-Sohn J, et al: Plk4-induced centriole biogenesis in human cells.
Dev Cell 2007, 13(2):190-202.

Chretien D, et al: Reconstruction of the centrosome cycle from
cryoelectron micrographs. J Struct Biol 1997, 120(2):117-33.

Hinchcliffe EH, et al: Requirement of Cdk2-cyclin E activity for repeated
centrosome reproduction in Xenopus egg extracts. [see comments.].
Science 1999, 283(5403):851-4.

Matsumoto Y, Hayashi K, Nishida E: Cyclin-dependent kinase 2 (Cdk2) is
required for centrosome duplication in mammalian cells. Current Biology
1999, 9(8):429-32.

Meraldi P, et al: Centrosome duplication in mammalian somatic cells
requires E2F and Cdk2- cyclin A. Nat Cell Biol 1999, 1(2):88-93.

White RA, Pan Z, Salisbury JL: GFP-centrin as a marker for centriole
dynamics in living cells. Microscopy Research & Technique 2000, 49(5):451-7.
Saavedra Hl, et al: Inactivation of E2F3 results in centrosome
amplification. Cancer Cell 2003, 3(4):333-46.

Marshall WF, Vucica Y, Rosenbaum JL: Kinetics and regulation of de novo
centriole assembly. Implications for the mechanism of centriole
duplication. Curr Biol 2001, 11(5):308-17.

Khodjakov A, et al: Centrosome-independent mitotic spindle formation in
vertebrates. Curr Biol 2000, 10(2):59-67.

Kuriyama R, Borisy GG: Centriole cycle in Chinese hamster ovary cells as
determined by whole-mount electron microscopy. J Cell Biol 1981, 91(3
Pt 1):814-21.

Vorobjev IA, Chentsov Yu S: Centrioles in the cell cycle. I. Epithelial cells. J
Cell Biol 1982, 93(3):938-49.

Lange BM, et al: Centriole duplication and maturation in animal cells.
Curr Top Dev Biol 2000, 49:235-49.

Alvey PL: An investigation of the centriole cycle using 3T3 and CHO
cells. J Cell Sci 1985, 78:147-62.

La Terra S, et al: The de novo centriole assembly pathway in Hela cells:
cell cycle progression and centriole assembly/maturation. J Cell Biol 2005,
168(5):713-22.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

Page 11 of 13

Khodjakov A, et al: De novo formation of centrosomes in vertebrate cells
arrested during S phase. J Cell Biol 2002, 158(7):1171-81.

Pagano M, et al: Cyclin A is required at two points in the human cell
cycle. Embo J 1992, 11(3):961-71.

Pines J, Hunter T: Cyclins A and B1 in the human cell cycle. Ciba Found
Symp 1992, 170:187-96.

Dulic V, Lees E, Reed SI: Association of human cyclin E with a periodic
G1-S phase protein kinase. Science 1992, 257(5078):1958-61.

Reed SI, et al: G1 control in yeast and animal cells. Ciba Found Symp 1992,
170:7-15, discussion 15-9.

Koff A, et al: Formation and activation of a cyclin E-cdk2 complex
during the G1 phase of the human cell cycle. Science 1992,
257(5077):1689-94.

Xiong Y, Zhang H, Beach D: D type cyclins associate with multiple
protein kinases and the DNA replication and repair factor PCNA. Cel/
1992, 71(3):505-14.

Baldin V, et al: Cyclin D1 is a nuclear protein required for cell cycle
progression in G1. Genes & Development 1993, 7(5):812-21.

Hall FL, et al: Two potentially oncogenic cyclins, cyclin A and cyclin D1,
share common properties of subunit configuration, tyrosine
phosphorylation and physical association with the Rb protein. Oncogene
1993, 8(5):1377-84.

Peeper DS, et al: A- and B-type cyclins differentially modulate substrate
specificity of cyclin-cdk complexes. EMBO J 1993, 12(5):1947-54.

Xiong Y, Zhang H, Beach D: Subunit rearrangement of the cyclin-
dependent kinases is associated with cellular transformation. Genes Dev
1993, 7(8):1572-83.

Chellappan SP, et al: The E2F transcription factor is a cellular target for
the RB protein. Cell 1991, 65(6):1053-61.

Pagano M, et al: Binding of the human E2F transcription factor to the
retinoblastoma protein but not to cyclin A is abolished in HPV-16-
immortalized cells. Oncogene 1992, 7(9):1681-6.

Shirodkar S, et al: The transcription factor E2F interacts with the
retinoblastoma product and a p107-cyclin A complex in a cell cycle-
regulated manner. Cell 1992, 68(1):157-66.

Devoto SH, et al: A cyclin A-protein kinase complex possesses sequence-
specific DNA binding activity: p33cdk2 is a component of the E2F-cyclin
A complex. Cell 1992, 68(1):167-76.

Cao L, et al: Independent binding of the retinoblastoma protein and
p107 to the transcription factor E2F. Nature 1992, 355(6356):176-9.
Cobrinik D, et al: Cell cycle-specific association of E2F with the p130 E1A-
binding protein. Genes Dev 1993, 7(12A):2392-404.

Fattaey AR, Harlow E, Helin K: Independent regions of adenovirus E1A are
required for binding to and dissociation of E2F-protein complexes. Mo/
Cell Biol 1993, 13(12):7267-77.

Bandara LR, et al: Functional synergy between DP-1 and E2F-1 in the cell
cycle-regulating transcription factor DRTF1/E2F. Embo J 1993,
12(11):4317-24.

Ewen ME, et al: Functional interactions of the retinoblastoma protein
with mammalian D- type cyclins. Cell 1993, 73(3):487-97.

Kato J, et al: Direct binding of cyclin D to the retinoblastoma gene
product (pRb) and pRb phosphorylation by the cyclin D-dependent
kinase CDK4. Genes Dev 1993, 7(3):331-42.

Dowdy SF, et al: Physical interaction of the retinoblastoma protein with
human D cyclins. Cell 1993, 73(3):499-511.

Dynlacht BD, et al: Differential regulation of E2F transactivation by cyclin/
cdk2 complexes. Genes Dev 1994, 8(15):1772-86.

Krek W, et al: Negative regulation of the growth-promoting transcription
factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell
1994, 78(1):161-72.

Hatakeyama M, et al: Collaboration of G1 cyclins in the functional
inactivation of the retinoblastoma protein. Genes Dev 1994, 8(15):1759-71.
Mittnacht S, et al: Distinct sub-populations of the retinoblastoma protein
show a distinct pattern of phosphorylation. EMBO J 1994, 13(1):118-27.
Obeyesekere MN, Herbert JR, Zimmerman SO: A model of the G1 phase of
the cell cycle incorporating cyclin E/cdk2 complex and retinoblastoma
protein. Oncogene 1995, 11(6):1199-205.

Beijersbergen RL, et al Regulation of the retinoblastoma protein-related
p107 by G1 cyclin complexes. Genes Dev 1995, 9(11):1340-53.

Bremner R, et al: Direct transcriptional repression by pRB and its reversal
by specific cyclins. Mol Cell Biol 1995, 15(6):3256-65.


http://www.ncbi.nlm.nih.gov/pubmed/14695989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14695989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12813459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12813459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006703?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17662154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17662154?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9501196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9501196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11830638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11830638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20508983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20508983?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14506732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14506732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14506732?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17131329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17131329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16449657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16449657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16449657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18555779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18555779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18656356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18656356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18656356?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9771714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9771714?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16253756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16253756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17681131?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9417977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9417977?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9933170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9933170?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10226033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10226033?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10559879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10559879?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12726860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12726860?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11267867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11267867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11267867?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10662665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10662665?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7328123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7328123?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7119006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11005021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4093469?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/4093469?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15738265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15738265?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12356862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12356862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1312467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1312467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1483345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1329201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1329201?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1483351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1388288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1388288?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1358458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1358458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8479754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8479754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8479754?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8491188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8491188?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8101826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8101826?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1828392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1828392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1323816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1323816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1323816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1531040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1531040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1531040?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1310073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1310073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1310073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1530885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1530885?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8253385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8253385?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8246949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8246949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8223441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8223441?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8343202?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8343202?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8449399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8449399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8449399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8490963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8490963?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7958856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7958856?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8033208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8033208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7958855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7958855?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8306955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8306955?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7566981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7566981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7566981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7797074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7797074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7760821?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7760821?dopt=Abstract

Harrison et al. Cell Division 2011, 6:2
http://www.celldiv.com/content/6/1/2

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.
84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

Adnane J, Shao Z, Robbins PD: The retinoblastoma susceptibility gene
product represses transcription when directly bound to the promoter. J
Biol Chem 1995, 270(15):8837-43.

Chen PL, Riley DJ, Lee WH: The retinoblastoma protein as a fundamental
mediator of growth and differentiation signals. Crit Rev Eukaryot Gene
Expr 1995, 5(1):79-95.

Bartek J, Bartkova J, Lukas J: The retinoblastoma protein pathway and the
restriction point. Curr Opin Cell Biol 1996, 8(6):805-14.

Mittnacht S, Weinberg RA: G1/S phosphorylation of the retinoblastoma
protein is associated with an altered affinity for the nuclear
compartment. Cell 1991, 65(3):381-93.

Ishida S, et al: Role for E2F in control of both DNA replication and
mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol
2001, 21(14):4684-99.

Muller H, et al- E2Fs regulate the expression of genes involved in
differentiation, development, proliferation, and apoptosis. Genes &
Development 2001, 15(3):267-85.

Ren B, et al: E2F integrates cell cycle progression with DNA repair,
replication, and G(2)/M checkpoints. Genes Dev 2002, 16(2):245-56.

Lacey KR, Jackson PK, Stearns T: Cyclin-dependent kinase control of
centrosome duplication. Proceedings of the National Academy of Sciences of
the United States of America 1999, 96(6):2817-22.

Matsumoto Y, Maller JL: Calcium, calmodulin, and CaMKIl requirement for
initiation of centrosome duplication in Xenopus egg extracts. Science
2002, 295(5554):499-502.

Tsou MF, Stearns T: Mechanism limiting centrosome duplication to once
per cell cycle. Nature 2006, 442(7105):947-51.

Ortega S, et al: Cyclin-dependent kinase 2 is essential for meiosis but not
for mitotic cell division in mice. Nat Genet 2003, 35(1):25-31.

Berthet C, et al: Cdk2 knockout mice are viable. Curr Biol 2003,
13(20):1775-85.

Duensing A, et al: Cyclin-dependent kinase 2 is dispensable for normal
centrosome duplication but required for oncogene-induced centrosome
overduplication. Oncogene 2006, 25(20):2943-9.

Geng Y, et al Cyclin E ablation in the mouse. Cell 2003, 114(4):431-43.
McCleland ML, Farrell JA, O'Farrell PH: Influence of cyclin type and dose
on mitotic entry and progression in the early Drosophila embryo. J Cell
Biol 2009, 184(5):639-46.

Hochegger H, et al: An essential role for Cdk1 in S phase control is
revealed via chemical genetics in vertebrate cells. J Cell Biol 2007,
178(2):257-68.

Adon AM, et al: Cdk2 and Cdk4 regulate the centrosome cycle and are
critical mediators of centrosome amplification in p53-null cells. Mol Cell
Biol 2010, 30(3):694-710.

Zamora |, Marshall WF: A mutation in the centriole-associated protein
centrin causes genomic instability via increased chromosome loss in
Chlamydomonas reinhardtii. BMC Biol 2005, 3:15.

Nigg EA, Raff JW: Centrioles, centrosomes, and cilia in health and
disease. Cell 2009, 139(4):663-78.

Lee RJ, et al: Cyclin D1 is required for transformation by activated Neu
and is induced through an E2F-dependent signaling pathway. Mol Cell
Biol 2000, 20(2):672-83.

Botz J, et al: Cell cycle regulation of the murine cyclin E gene depends
on an E2F binding site in the promoter. Mol Cell Biol 1996,
16(7):3401-9.

Ishida S, et al: Role for E2F in control of both DNA replication and
mitotic functions as revealed from DNA microarray analysis. Molecular &
Cellular Biology 2001, 21(14):4684-99.

Yung BY, et al: Effects of actinomycin D analogs on nucleolar
phosphoprotein B23 (37,000 daltons/pl 5.1). Biochem Pharmacol 1985,
34(22):4059-63.

Feuerstein N, Randazzo PA: In vivo and in vitro phosphorylation studies
of numatrin, a cell cycle regulated nuclear protein, in insulin-stimulated
NIH 3T3 HIR cells. Exp Cell Res 1991, 194(2):289-96.

Schmidt-Zachmann MS, Hugle-Dorr B, Franke WW: A constitutive nucleolar
protein identified as a member of the nucleoplasmin family. EMBO J
1987, 6(7):1881-90.

Grisendi S, et al: Role of nucleophosmin in embryonic development and
tumorigenesis. Nature 2005, 437(7055):147-53.

Okuda M, et al: Nucleophosmin/B23 is a target of CDK2/cyclin E in
centrosome duplication. Cell 2000, 103(1):127-40.

97.

98.

99.

100.

102.

103.

104.

105.

106.

107.

108.

111,

112.

113.

115.

116.

117.

119.

120.

121.

124.

Page 12 of 13

Tokuyama Y, et al: Specific phosphorylation of nucleophosmin on Thr
(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome
duplication. Journal of Biological Chemistry 2001, 276(24):1529-37.
Zatsepina QV, et al: The nucleolar phosphoprotein B23 redistributes in
part to the spindle poles during mitosis. J Cell Sci 1999, 112(Pt 4):455-66.
Krause A, Hoffmann I: Polo-like kinase 2-dependent phosphorylation of
NPM/B23 on serine 4 triggers centriole duplication. PLoS One 2010, 5(3):
€9849.

Wang HF, et al: BRCA2 and nucleophosmin co-regulate centrosome
amplification and form a complex with Rho effector kinase ROCK2.
Cancer Res 2010.

. Adams MR, et al: Complex transcriptional regulatory mechanisms control

expression of the E2F3 locus. Mol Cell Biol 2000, 20(10):3633-9.

Winey M, et al: MPST and MPS2: novel yeast genes defining distinct
steps of spindle pole body duplication. J Cell Biol 1991, 114(4):745-54.
Castillo AR, et al: The yeast protein kinase Mps1p is required for
assembly of the integral spindle pole body component Spc42p. J Cell
Biol 2002, 156(3):453-65.

Fisk HA, Winey M: The mouse Mps1p-like kinase regulates centrosome
duplication. Cell 2001, 106(1):95-104.

Kasbek C, et al: Preventing the degradation of mps1 at centrosomes is
sufficient to cause centrosome reduplication in human cells. Mol Biol Cell
2007, 18(11):4457-69.

Stucke VM, et al: Human Mps1 kinase is required for the spindle
assembly checkpoint but not for centrosome duplication. Embo J 2002,
21(7):1723-32.

Fisk HA, Mattison CP, Winey M: Human Mps1 protein kinase is required
for centrosome duplication and normal mitotic progression. Proc Nat!
Acad Sci USA 2003, 100(25):14875-80.

Habedanck R, et al- The Polo kinase Plk4 functions in centriole
duplication. Nat Cell Biol 2005, 7(11):1140-6.

. Chen Z, et al: CP110, a cell cycle-dependent CDK substrate, regulates

centrosome duplication in human cells. Developmental Cell 2002,
3(3):339-50.

. Fukasawa K: p53, cyclin-dependent kinase and abnormal amplification of

centrosomes. Biochim Biophys Acta 2008.

Fukasawa K: Oncogenes and tumour suppressors take on centrosomes.
Nat Rev Cancer 2007, 7(12):911-24.

Loncarek J, et al: Control of daughter centriole formation by the
pericentriolar material. Nat Cell Biol 2008, 10(3):322-8.

Durcan TM, et al: Centrosome duplication proceeds during mimosine-
induced G1 cell cycle arrest. J Cell Physiol 2008, 215(1):182-91.

. Fukasawa K, et al Abnormal centrosome amplification in the absence of

p53. Science 1996, 271(5256):1744-7.

Kubbutat MH, Jones SN, Vousden KH: Regulation of p53 stability by
Mdma2. Nature 1997, 387(6630):299-303.

Duensing S, et al: The human papillomavirus type 16 E6 and E7
oncoproteins cooperate to induce mitotic defects and genomic
instability by uncoupling centrosome duplication from the cell division
cycle. Proceedings of the National Academy of Sciences of the United States
of America 2000, 97(18):10002-7.

Royds JA, lacopetta B: p53 and disease: when the guardian angel fails.
Cell Death Differ 2006.

. Harper JW, et al: The p21 Cdk-interacting protein Cip1 is a potent

inhibitor of G1 cyclin-dependent kinases. Cell 1993, 75(4):805-16.

Harper JW, et al: Inhibition of cyclin-dependent kinases by p21. Mol Biol
Cell 1995, 6(4):387-400.

Shinmura K, et al: Direct evidence for the role of centrosomally localized
p53 in the regulation of centrosome duplication. Oncogene 2007,
26(20):2939-44.

Tarapore P, et al- Direct regulation of the centrosome duplication cycle
by the p53-p21Waf1/Cip1 pathway. Oncogene 2001, 20(25):3173-84.

. Duensing A, et al: p21(Waf1/Cip1) Deficiency Stimulates Centriole

Overduplication. Cell Cycle 2006, 5(24).

. Mantel C, et al: p21(cip-1/waf-1) deficiency causes deformed nuclear

architecture, centriole overduplication, polyploidy, and relaxed
microtubule damage checkpoints in human hematopoietic cells. Blood
1999, 93(4):1390-8.

Nishimura T, et al- Centrosome-targeting region of CG-NAP causes
centrosome amplification by recruiting cyclin E-cdk2 complex. Genes
Cells 2005, 10(1):75-86.


http://www.ncbi.nlm.nih.gov/pubmed/7721791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7721791?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7549181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7549181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8939678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8939678?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2018973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2018973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2018973?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11416145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11416145?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11799067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11799067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10077594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10077594?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11799245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11799245?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16862117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12923533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12923533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14561402?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16331279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16331279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16331279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12941272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19273612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19273612?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17635936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17635936?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19933848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19933848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15927066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15927066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15927066?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19914163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19914163?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10611246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10611246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8668155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8668155?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2415133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2415133?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2026181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2026181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2026181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3308448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3308448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16007073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16007073?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11051553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11051553?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9914158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9914158?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20352051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20352051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21084279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21084279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10779353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10779353?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1869587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1869587?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11827982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11827982?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11461705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11461705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17804818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17804818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11927556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11927556?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14657364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14657364?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16244668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12361598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12361598?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18472015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18472015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18004399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18297061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18297061?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17960592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17960592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8596939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8596939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9153396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9153396?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10944189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10944189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10944189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10944189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16557268?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8242751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8242751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7626805?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17072342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11423967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11423967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17172866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17172866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9949183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9949183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9949183?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15670215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15670215?dopt=Abstract

Harrison et al. Cell Division 2011, 6:2
http://www.celldiv.com/content/6/1/2

125.

126.

128.

129.

130.

131.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

Nakayama K, et al: Targeted disruption of Skp2 results in accumulation of
cyclin E and p27(Kip1), polyploidy and centrosome overduplication.
Embo J 2000, 19(9):2069-81.

Cheng X, et al: ECRG2 disruption leads to centrosome amplification and
spindle checkpoint defects contributing chromosome instability. J Biol
Chem 2008, 283(9):5888-98.

. Hemerly AS, et al: Orc1 controls centriole and centrosome copy number

in human cells. Science 2009, 323(5915):789-93.

Balczon R, et al: Dissociation of centrosome replication events from
cycles of DNA synthesis and mitotic division in hydroxyurea-arrested
Chinese hamster ovary cells. J Cell Biol 1995, 130(1):105-15.

Li L, et al. EGFRVIII expression and PTEN loss synergistically induce
chromosomal instability and glial tumors. Neuro Oncol 2009, 11(1):9-21.
Schechter AL, et al: The neu oncogene: an erb-B-related gene encoding a
185,000-Mr tumour antigen. Nature 1984, 312(5994):513-6.

Harari D, Yarden Y: Molecular mechanisms underlying ErbB2/HER2 action
in breast cancer. Oncogene 2000, 19(53):6102-14.

. Yarden Y: Biology of HER2 and its importance in breast cancer. Oncology

2001, 61(Suppl 2):1-13.

. Montagna C, et al: Centrosome abnormalities, recurring deletions of

chromosome 4, and genomic amplification of HER2/neu define mouse
mammary gland adenocarcinomas induced by mutant HER2/neu.
Oncogene 2002, 21(6):890-8.

. Saavedra Hl, et al: MAPK mediates RAS-induced chromosome instability.

Journal of Biological Chemistry 1999, 274(53):38083-90.

Saavedra Hl, et al: The RAS oncogene induces genomic instability in
thyroid PCCL3 cells via the MAPK pathway. Oncogene 2000,
19(34):3948-54.

Ussar S, Voss T: MEKT and MEK2, different regulators of the G1/S
transition. J Biol Chem 2004, 279(42):43861-9.

Yun C, et al: Mitotic aberration coupled with centrosome amplification is
induced by hepatitis B virus X oncoprotein via the Ras-mitogen-
activated protein/extracellular signal-regulated kinase-mitogen-activated
protein pathway. Mol Cancer Res 2004, 2(3):159-69.

Sherr CJ, McCormick F: The RB and p53 pathways in cancer. Cancer Cell
2002, 2(2):103-12.

Reddy HK, et al: Cyclin-dependent kinase 4 expression is essential for
neu-induced breast tumorigenesis. Cancer Res 2005, 65(22):10174-8.

Yu Q, Geng Y, Sicinski P: Specific protection against breast cancers by
cyclin D1 ablation. Nature 2001, 411(6841):1017-21.

Nelsen CJ, et al: Short term cyclin D1 overexpression induces centrosome
amplification, mitotic spindle abnormalities, and aneuploidy. J Biol Chem
2005, 280(1):768-76.

Hanse EA, et al: Cdk2 plays a critical role in hepatocyte cell cycle
progression and survival in the setting of cyclin D1 expression in vivo.
Cell Cycle 2009, 8(17):2802-9.

Berman H, et al: Genetic and epigenetic changes in mammary epithelial
cells identify a subpopulation of cells involved in early carcinogenesis.
Cold Spring Harb Symp Quant Biol 2005, 70:317-27.

Holst CR, et al: Methylation of p16(INK4a) promoters occurs in vivo in
histologically normal human mammary epithelia. Cancer Res 2003,
63(7):1596-601.

McDermott KM, et al: p16(INK4a) prevents centrosome dysfunction and
genomic instability in primary cells. PLoS Biol 2006, 4(3):€51.

Liu T, et al: Increased gamma-tubulin expression and P16INK4A promoter
methylation occur together in preinvasive lesions and carcinomas of the
breast. Ann Oncol 2009, 20(3):441-8.

Kondo Y, et al: Downregulation of histone H3 lysine 9 methyltransferase
G9a induces centrosome disruption and chromosome instability in
cancer cells. PLoS One 2008, 3(4):e2037.

el-Deiry WS: Regulation of p53 downstream genes. Semin Cancer Biol
1998, 8(5):345-57.

Mackay A, et al. cDNA microarray analysis of genes associated with
ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial
cells. Oncogene 2003, 22(17):2680-8.

Meijer L, et al: Biochemical and cellular effects of roscovitine, a potent
and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and
cdk5. Eur J Biochem 1997, 243(1-2):527-36.

. Kitagawa M, et al: A cyclin-dependent kinase inhibitor, butyrolactone |,

inhibits phosphorylation of RB protein and cell cycle progression.
Oncogene 1994, 9(9):2549-57.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

Page 13 of 13

Hanashiro K, et al: Roles of cyclins A and E in induction of centrosome
amplification in p53-compromised cells. Oncogene 2008,
11;27(40):5288-302.

Prosser SL, Straatman KR, Fry AM: Molecular dissection of the centrosome
overduplication pathway in S-phase-arrested cells. Mol Cell Biol 2009,
29(7):1760-73.

Duensing A, et al: RNA polymerase Il transcription is required for human
papillomavirus type 16 E7- and hydroxyurea-induced centriole
overduplication. Oncogene 2007, 26(2):215-23.

lovino F, et al- RB acute loss induces centrosome amplification and
aneuploidy in murine primary fibroblasts. Mol Cancer 2006, 5:38.

Lentini L, et al: Centrosome amplification induced by hydroxyurea leads
to aneuploidy in pRB deficient human and mouse fibroblasts. Cancer Lett
2006, 238(1):153-60.

Tarapore P, Okuda M, Fukasawa K: A-mammalian in vitro centriole
duplication system: evidence for involvement of CDK2/cyclin E and
nucleophosmin/B23 in centrosome duplication. Cell Cycle 2002, 1(1):75-81.
Brady SN, et al: Nucleophosmin protein expression level, but not
threonine 198 phosphorylation, is essential in growth and proliferation.
Oncogene 2009, 28(36):3209-20.

Schliekelman M, et al: Impaired Bub1 function in vivo compromises
tension-dependent checkpoint function leading to aneuploidy and
tumorigenesis. Cancer Res 2009, 69(1):45-54.

Weaver BA, Cleveland DW: Aneuploidy: instigator and inhibitor of
tumorigenesis. Cancer Res 2007, 67(21):10103-5.

Godinho SA, Kwon M, Pellman D: Centrosomes and cancer: how cancer
cells divide with too many centrosomes. Cancer Metastasis Rev 2009,
28(1-2):85-98.

Ganem NJ, Godinho SA, Pellman D: A mechanism linking extra
centrosomes to chromosomal instability. Nature 2009, 460(7252):278-82.
Elenbaas B, et al: Human breast cancer cells generated by oncogenic
transformation of primary mammary epithelial cells. Genes & Development
2001, 15(1):50-65.

Chernova OB, et al: MYC abrogates p53-mediated cell cycle arrest in N-
(phosphonacetyl)-L-aspartate-treated cells, permitting CAD gene
amplification. Mol Cell Biol 1998, 18(1):536-45.

Karlsson A, et al: Defective double-strand DNA break repair and
chromosomal translocations by MYC overexpression. Proc Natl Acad Sci
USA 2003, 100(17):9974-9.

Ray S, et al: MYC can induce DNA breaks in vivo and in vitro
independent of reactive oxygen species. Cancer Res 2006,
66(13):6598-605.

Denko NC, et al: The human Ha-ras oncogene induces genomic
instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci
USA 1994, 91(11):5124-8.

Kumari A, Schultz N, Helleday T: p53 protects from replication-associated
DNA double-strand breaks in mammalian cells. Oncogene 2004,
23(13):2324-9.

doi:10.1186/1747-1028-6-2

Cite this article as: Harrison et al. The G; phase Cdks regulate the
centrosome cycle and mediate oncogene-dependent centrosome
amplification. Cell Division 2011 6:2.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
e Thorough peer review
¢ No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
¢ Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central
J



http://www.ncbi.nlm.nih.gov/pubmed/10790373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10790373?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18162463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18162463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19197067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19197067?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7790366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7790366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7790366?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18812521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18812521?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6095109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6095109?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11156523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11156523?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11694782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11840334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11840334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11840334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10608877?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10951588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10951588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15284233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15284233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15037655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12204530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16288002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16288002?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11429595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11429595?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15509582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15509582?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19652536?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16869768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16869768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12670910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12670910?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16464125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16464125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131428?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18446223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18446223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18446223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10101800?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12730682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12730682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12730682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9030781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9030781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9030781?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8058318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8058318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19139275?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19139275?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16819507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16819507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16819507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16987420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16987420?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16154257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16154257?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12429912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12429912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12429912?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19561638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19117986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19117986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19117986?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17974949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17974949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19156503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19156503?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19506557?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19506557?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9418900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9418900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9418900?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12909717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12909717?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16818632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16818632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8197195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8197195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14743204?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14743204?dopt=Abstract

	Abstract
	The centrosome and cancer
	The coordinated activities of G1 phase Cdks, centrosomal kinases and phosphatases regulate the centrosome cycle
	The centrosome duplication cycle
	The G1 phase Cdks coordinate the cell and centrosome cycles
	Targets of the G1 phase Cdks

	Deregulated G1 Cdks, centrosome amplification and cancer
	Oncogene-dependent centrosome amplification correlates with hyperactive Cdk2 and Cdk4
	Direct evidence demonstrating involvement of the G1 phase Cdks in centrosome amplification

	Conclusions and future directions
	Authors' contributions
	Competing interests
	References

