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The loop-less "™Cdc34 E2 mutant defective in
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Abstract

Background: The 573/597/loop motif is a hallmark of the Cdc34 family of E2 ubiquitin-conjugating enzymes
that together with the SCF E3 ubiquitin ligases promote degradation of proteins involved in cell cycle and
growth regulation. The inability of the loop-less #'?Cdc34 mutant to support growth was linked to its
inability to catalyze polyubiquitination. However, the loop-less triple mutant (tm) Cdc34, which not only lacks
the loop but also contains the S73K and S97D substitutions typical of the K73/D97/no loop motif present in
other E2s, supports growth. Whether "Cdc34 supports growth despite defective polyubiquitination, or the
S73K and S97D substitutions, directly or indirectly, correct the defect caused by the loop absence, are
unknown.

Results: "™Cdc34 supports yeast viability with normal cell size and cell cycle profile despite producing fewer
polyubiquitin conjugates in vivo and in vitro. The in vitro defect in Sicl substrate polyubiquitination is similar to the
defect observed in reactions with “'?Cdc34 that cannot support growth. The synthesis of free polyubiquitin by
"MCdc34 is activated only modestly and in a manner dependent on substrate recruitment to SCF<**,
Phosphorylation of C-terminal serines in "™Cdc34 by Cka2 kinase prevents the synthesis of free polyubiquitin
chains, likely by promoting their attachment to substrate. Nevertheless, “"CDC34 yeast are sensitive to loss of the
Ubp14 C-terminal ubiquitin hydrolase and DUBs other than Ubp14 inefficiently disassemble polyubiquitin chains
produced in ""CDC34 yeast extracts, suggesting that the free chains, either synthesized de novo or recycled from
substrates, have an altered structure.

Conclusions: The catalytic motif replacement compromises polyubiquitination activity of Cdc34 and alters its
regulation in vitro and in vivo, but either motif can support Cdc34 function in yeast viability. Robust
polyubiquitination mediated by the $73/597/loop motif is thus not necessary for Cdc34 role in yeast viability, at
least under typical laboratory conditions.
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Introduction

The covalent attachment of ubiquitin to other proteins
often serves as the signal for their degradation by the 26
S proteasome [1]. Protein ubiquitination depends on a
cascade of ubiquitin transfer reactions that begins with
the formation of a high-energy thiolester between the
C-terminus of ubiquitin and the catalytic site cysteine of
the E1 ubiquitin-activating enzyme. The activated ubi-
quitin is transesterified to the active site cysteine of one
of many E2 ubiquitin-conjugating enzymes and then
conjugated to specific substrates in a manner dependent
upon specific E3 ubiquitin ligases. While the term “ubi-
quitin ligase” implies that all E3s are enzymes, only the
HECT-type E3s contain a catalytic site cysteine that
directly participates in the ubiquitin transfer. The
RING-type E3s promote ubiquitination of specific sub-
strates by the catalytic site of an E2. The significance of
this difference is unclear, as both types of ubiquitin
transfer cascades lead to formation of an isopeptide
bond between the C-terminus of ubiquitin and a lysine
residue on the substrate. Protein substrates can be mod-
ified with one or multiple ubiquitins and a chain of
polyubiquitin can be synthesized when a lysine of ubi-
quitin serves as the isopeptide bond acceptor. A chain
involving lysine 48 (K48) of ubiquitin and composed of
at least 4 ubiquitins serves as the primary signal for sub-
strate proteolysis [2,3].

The RING-type SCF E3s are the largest and arguably
most extensively studied family of ubiquitin ligases, with
members present in all eukaryotes [4]. The discovery of
the SCF E3s was initiated by the observation that the S.
cerevisiae CDC34 gene encodes an E2 [5] that together
with the Cdc53, Skpl and Cdc4 cell cycle regulatory
proteins promote degradation of the Sicl S-phase
cyclin-dependent kinase inhibitor, thereby permitting
entry into S phase [6,7]. A subsequent biochemical
reconstruction [8-11] showed that Skpl, Cdc53, Rbx1
and Cdc4, an F-box protein, form the SCF“* E3 com-
plex. The large number of F-box proteins with different
C-terminal protein-protein interaction motifs enables
the family of SCF E3s to recruit many substrates for
ubiquitination by Cdc34, usually in response to substrate
phosphorylation.

Of the eleven E2 ubiquitin-conjugating enzymes in S.
cerevisiae, only Cdc34 functions with SCF E3s in vivo.
This specificity is attributed to the unique C-terminus
of Cdc34 that includes a domain necessary for binding
to SCF [12-14], because Cdc34 mutants that lack this C-
terminal domain cannot support yeast viability and a
fusion protein containing this domain and the catalytic
core of Rad6 can replace Cdc34 function in vivo. Based
on this evidence it has been proposed that the catalytic
cores of the E2s are interchangeable [15,16].
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On the other hand, three elements, S73, S97 and an
acidic loop, distinguish the E2 cores of Cdc34 and Ubc7
from other ubiquitin conjugating enzymes (Figure 1A)
[17]. The significance of these elements is best illu-
strated by the lethality associated with the substitution
of residue S97 or deletion of the loop alone (A12) [17].
The loop-less “1>Cdc34 monoubiquitinates the SCFCI¢%-
dependent substrate Sicl with a rate comparable to the
rate of wild type Cdc34 (0.2 pmol/s) but synthesizes
K48-type di-ubiquitin at a 10-fold slower rate (0.08
pmol/s vs. 0.8 pmol/s). Based on these findings it has
been proposed that the loop plays a key role in the
synthesis of K48-type polyubiquitin [18,19]. Similarly,
the S97D replacement prevents self-association of
Cdc34 molecules [20], a step implicated in the activation
of polyubiquitination [21]. An E2 protein lacking both of
these elements would be predicted to be even more
defective and fail to support yeast growth. Contrary to
this expectation, the S97D substitution and the loop
deletion act as intragenic suppressors, and the suppres-
sion is best when combined with the S73K substitution,
which by itself has no phenotype. The resulting triple
mutant (tm) Cdc34 (S73K, S97D, A12) has the K73/
D97/Aloop motif typical of other E2s, no longer displays
the self-associating defect typical of the S97D substitu-
tion alone and supports the growth of cdc34-2ts mutant
yeast at a non-permissive temperature. A recent genetic
study shows that the “””CDC34 allele supports yeast
growth even when expressed from the natural chromo-
somal location of CDC34 [22]. However, this gene repla-
cement causes numerous yet not fully understood
changes in gene expression and evokes sensitivity to loss
of several genes, including genes previously linked to
function of the Cdc34/SCF pathway. Among these genes
is CKA2, which encodes the catalytic subunit of casein
kinase 2 that phosphorylates Cdc34 [23,24]; RPNI0,
which encodes the classic ubiquitin-binding receptor of
the proteasome; and RAD23, which encodes the UBA-
UBL type of a shuttle protein that genetically and bio-
chemically interacts with RPN10 [25,26]. One of the key
unanswered questions is whether ""Cdc34 supports cell
growth despite compromised polyubiquitination, or the
S73K and S97D substitutions, directly or indirectly, cor-
rect the defect in polyubiquitination associated with the
loop absence.

We show that replacement of the catalytic motif com-
promises polyubiquitination activity of Cdc34 and alters
its regulation in vitro and in vivo. Nevertheless, either
motif can support Cdc34 function in cell growth and
division, with normal cell size and cell cycle profile.
These findings suggest that robust polyubiquitination
catalyzed in a manner dependent on the $73/597/loop
motif is not necessary for Cdc34 function in vivo, at
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least under typical laboratory conditions. The $73/597/
loop motif conservation could be associated with a yet
unappreciated role of Cdc34, possibly under conditions
of stress and/or compromised growth.

Results

Isogenic CDC34 and "™CDC34 yeast strains have similar
growth properties, cell size and cell cycle profiles under
typical laboratory conditions

Due to an essential role of Cdc34 in cell division [5],
mutations that compromise Cdc34 function in vivo lead
to cell cycle arrest. Monitoring growth and cell cycle
phenotype is thus a common approach to assess the
role of Cdc34 residues and/or motifs.

Previous analysis of growth phenotypes suggested that
the triple mutant “Cdc34 in which the $73/597/loop
motif conserved among the Cdc34-like E2s is replaced
with the K73/D97/no loop motif typical for other E2s
(Figure 1A-D) supports yeast growth. This conclusion
was based on complementation of the cdc34-2 tempera-
ture sensitive (ts) and cdc34A mutant yeast by over-
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expressed chimeric "CDC34/RAD6 [16] or triple
mutant “”CDC34 [17]; an approach that could mask a
functional defect due to overproduction of the comple-
menting protein. However, we obtain similar results
when cdc34-2" yeast express the “”CDC34 allele from
the GALI promoter under non-inducing conditions
thereby ensuring only low level expression (Figure 1E).
In contrast, growth is not supported by **”°CDC34 that
carries only the S97D replacement, or by 4’>’CDC34 that
lacks the loop alone. Disruption of the §73/597/loop
motif in Cdc34, but not its replacement with the alter-
native E2 core motif is thus lethal for yeast.

We next generated a yeast strain in which the wild-
type ORF region of CDC34 is replaced by an ORF
encoding "™Cdc34, leaving the 5’ and 3’ regions intact
[22]. The integration of "CDC34 at the natural chro-
mosomal locus of CDC34 supports yeast growth on
plates (Figure 2A) and in liquid culture (Figure 2B). In
liquid growth medium CDC34 (BL2) yeast have an esti-
mated doubling time of 86 +/-2 min and “”"CDC34
(RC85) yeast double every 92 +/- 4 minutes. Apart from
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Figure 1 Disruption, but not replacement, of the $73/597/loop motif conserved among the Cdc34/Ubc7 E2 family is lethal for yeast.
(A). Partial sequence alignment. Asterisks represent residues identical to Cdc34 and dashes represent gaps. Sc - S. cerevisiae; Oc - O. cuniculus;
Dm - D. melanogaster, Ce - C. elegans; At - A. thaliana; Hs - H. sapiens; ASFV1 - African swine fever virus (G:9628248); ASFV2 -African swine fever
virus (Gl:450743). (B). Structural models of the E2 core (a.a. 1-170) of Cdc34 and "™Cdc34. Residues corresponding to K73 and D97 in "™Cdc34,
and S73 and S97 in Cdc34, are color coded as in A and shown in the context of structures of a scRadé and scUbc7 fragment (Methods); navy
blue: the acidic loop formed by scUbc7 residues corresponding to amino acids 103-114 in Cdc34; red: the residue corresponding to the catalytic
site C95 of Cdc34 and "™Cdc34. (C). Model of ubiquitin-charged Cdc34 (a.a. 1-170) bound to the RING domain of Rbx1. See Methods. (D).
Scheme of Cdc34 domains of interest. (E). Rescue of cdc34-2ts yeast growth with Cdc34 E2 core mutant constructs. Cultures of cdc34-2ts strain
carrying the indicated constructs under the GALT0 promoter on a 2u YEp51 plasmid were grown overnight at 27°C in SD-Leu, adjusted to a
density of 1 x 10% cells/ml, serially diluted, spotted onto SD-Leu plates and incubated at permissive (27°C) or non-permissive (37°C) temperature
for 4 days. Note that dextrose allows only low expression of the GALT0 controlled constructs.
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Figure 2 Isogenic CDC34 (BL2) and "CDC34 (RC85) yeast strains have similar growth properties, cell size and cell cycle profiles under
typical laboratory conditions. (A). Growth on plates. Overnight cultures were adjusted to a density of 1 x 10° cells/ml, serially diluted, spotted onto
YPD and grown at 30°C. (B). Growth in liquid culture. Each strain was inoculated in three biological replicates into pre-warmed 50 ml of YPD at a
starting density of 5 x 10° cells/ml and grown with vigorous shaking at 31.5°C. The doubling time for CDC34 (BL2) is 86 +/- 2 min and "CDC34 (RC85)
is 92 +/- 4 minutes during the exponential phase of growth (0-11.75 hrs). (). Light microscopic images of cells. Yeast cultures were grown as in B, with
images collected at 1.5 x 10 cells/ml (mid-log phase) and 2 x 10° cells/ml (stationary phase). (D). Cell cycle distributions. Yeast cells were analyzed by
flow cytometry for their DNA content using propidium iodide staining (Methods). (E). Quantitative western blot analysis of the steady-state levels of
Cdc34 and "™Cdc34 proteins. Yeast extracts were prepared as described in Methods. The indicated amounts of total proteins were separated by SDS-

PAGE and analyzed by a-Cdc34 WB. Control a-Skp1 WB was performed to verify equal loading of analyzed samples. Known amounts of purified
Cdc34 and "™Cdc34 were used to verify that the a-Cdc34 antibodies have similar affinity for each protein construct.

this modest difference, these strains have similar cell
size and budding profiles, and accumulate to similar cell
densities in stationary phase (Figure 2C). Analysis of
DNA isolated from dividing CDC34 (BL2) and ""CDC34
(RC85) yeast verifies that they have similar cell cycle
profiles under typical laboratory conditions (Figure 2D).

These findings verify that “"Cdc34 protein supports
yeast growth despite lacking the catalytic core elements
conserved among the Cdc34-like E2s. However, the
steady-state level of "Cdc34 protein in yeast extracts is
approximately 4-fold higher than the level of Cdc34
(Figure 2E) even when extracts are prepared by boiling
cells directly in SDS-PAGE loading buffer (data not
shown). Since the increased steady-state level of
‘™Cdc34 is seen in a strain isogenic to the CDC34
strain, the difference is likely due to a difference in
post-translational regulation associated specifically with
the replacement of the catalytic E2 motif.

Purified "Cdc34 forms an ubiquitin-thiolester and
monoubiquitinates substrates, but is defective in
substrate polyubiquitination

To address how "™Cdc34 functions without the catalytic
core elements conserved among the Cdc34-like E2s, we

compared the various activities of purified ™ Cdc34 to
the activities of wild type Cdc34 and loop-less “'*Cdc34.
The comparison of Cdc34 and ""Cdc34 was done with
full-length proteins, but the comparison of all three cat-
alytic cores (wt, tm, A12) could be performed only with
Cdc34 proteins terminated at residue 244 (Figure 1D)
because full-length A12Cdc34 is insoluble (this work).
The previous characterization of “'*Cdc34 was also
done with a C-terminally truncated mutant
(“*2Cdc34*7°) [18]. Ectopic expression of Cdc34*** res-
cues growth of cdc34A yeast [15,16,27] and supports
yeast viability when expressed from the chromosomal
location of CDC34 [28], demonstrating that the C-term-
inally truncated form of Cdc34 is functional, at least in
the context of the wild type E2 core. All Cdc34 proteins
used in this study elute as monomers in gel filtration
chromatography (data not shown).

We first tested the ability of the purified Cdc34244,
A12Cdc34°* and "™Cdc34** proteins to form ubiquitin-
thiolester. Cdc34 molecules charged with an ubiquitin
thiolester are stable only under conditions preventing
ubiquitin discharge. Those conditions are ensured by
the absence of SCF, substrate and several C-terminal
lysines in Cdc34 that serve as intramolecular substrates
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(Figure 1D) [28]. The charging was performed for a
short time (5 minutes) with 1 pmol of Ubal E1 and 1-4
pmol of Cdc34>**, #12Cdc34*** or "™Cdc34>** followed
by SDS-PAGE under either non-reducing conditions (to
preserve the thiolester bond) or reducing conditions (to
verify that the ubiquitin-thiolester is sensitive to reduc-
tion). The charging was not allowed to proceed to com-
pletion, thereby ensuring that we could detect an
increase or decrease in the percentage of ubiquitin-
charged E2 molecules. Under these assay conditions,
similar fractions (10-50%) of total Cdc34**, #'2Cdc34***
and "™Cdc34>** molecules are converted into ubiquitin-
thiolesters within a range of protein concentrations (Fig-
ure 3A). This result agrees with a previous finding that
A12Cdc34°7° forms an ubiquitin-thiolester similarly to
wild type Cdc34 [18]. Neither the loop deletion nor the
triple mutant alteration of the E2 core thus compro-
mises formation of the ubiquitin-thiolester.

We next tested the ability of full-length Cdc34 and
‘™Cdc34 to autoubiquitinate one of their C-terminal
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lysines (Figure 1D). This reaction is inefficient and it is
catalyzed only in the absence of SCF [28]. However,
due to the intra-molecular nature [28], autoubiquitina-
tion provides unique insight into the intrinsic function
of Cdc34. We find that autoubiquitination of full-
length ™MCdc34 is compromised (Figure 3B, o.-Cdc34,
compare lanes 6-9 and 1-5). The lack of high molecu-
lar weight species in reactions with wild type ubiquitin
is consistent with a defect in polyubiquitination of
monoubiquitinated "™Cdc34, as it resembles the pat-
tern observed with methylated ubiquitin that cannot
be incorporated into polyubiquitin (Figure 3B, o-
Cdc34, compare lanes 6-9, 11-14, and 15-18). However,
longer reaction times are also needed to detect mono-
ubiquitinated “Cdc34 in amounts similar to Cdc34
(Figure 3B, a-Cdc34, lanes 11-14 and 15-18). Further-
more, the intra-molecular nature of autoubiquitination
[28] does not allow this assay to discriminate between
catalytic defects or a change in the intra-molecular
contacts between the E2 C-terminus and the E2 core.
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Cde3®™ (pmo) 1 2 4 12 4 1 2 4 Cde34  'mCde34 Cdc34 mCde34
mon:reduelng I-Cd634~Ub1 Time [min] 0 5 30 90 0 5 30 90 05309 05 30 %
SDS-PAGE } Cde34 120 -
3 70
g - Ub,
3 } Cde3d &
SDS-PAGE % so- L Cias
123456 7809 40 - \ InCde34
a-Cdc34 WB 1 23456 78 91011121314151617 18
D Ub, Ubal, FMetd, FSCFMt3
* E2 motif Wi tm AL2 C. Ub, Ubal, Sicl”, FSCFCdet
Time [min] 0 5 15 30 60 0 515 30 60 0 5 15 30 60 E2 motif wt tm Al2
FMet4-Ubn Time [min]l 0 560 60 0 560 60 0 5 60 60
o- "Met4 K%em-Ub L
— —— - - - E—— 3 Et4 220-
o-AMet30 | @ ‘ - - - - Met30 130 Sic1®.Ub,
- Cde3424
a-Cde3d o L tm g A120 034244 70 -
23 - Sic1P-Ub,
50- - Sic1™-Ub,
E2 motif tm 12 40- - iei?
Time [min] 0 5 15 30 60 0 5 15 30 60 I'Metd-Ub,
o "Mets M : i " Metd 123 456789101112
123456786910 o-Siel WB
Figure 3 Purified "™Cdc34 forms ubiquitin thiolester and monoubiquitinates substrates, but is defective in substrate
polyubiquitination. All assays were performed at 25°C in 10-20 L and included 1 pmol of Ubal E1 and 1.3 nmol of ubiquitin or its derivative.
(A). Formation of ubiquitin-thiolester. The indicated Cdc34?* proteins with wt, tm or A12 E2 core (1-4 pmol) were incubated for 5 minutes with
Ubal and ubiquitin followed by SDS-PAGE under reducing (+ BME) or non-reducing (- BME) conditions and a.-Cdc34 WB. (B). Autoubiquitination
of full length Cdc34 and "™Cdc34. Full length Cdc34 or ™Cdc34 (5 pmol) was incubated for the times indicated with Ubal and ubiquitin or
methylated ubiquitin followed by a-Cdc34 WB. (Q). "SCF-*“-dependent polyubiquitination of Sic1. The indicated Cdc34%** proteins (5 pmol)
were incubated for the times indicated with Ubal, the Sic1/Clb5/°*Cdc28 substrate complex (2 pmol) and FSCFe9<t (2 pmol) followed by 10%
SDS-PAGE and a-Sic1 WB. Reactions shown in lanes 4, 8 and 12 do not have Sicl. (D). “*'SCF¥****-dependent polyubiquitination of Met4. Tests
were performed as described in C except that with the “'SCFM™C E3 and "Met4 substrate. (E). “*'SCFM*®*°-dependent monoubiquitination of
"Met4. Tests as in D, but analyzed with shorter (1 instead of 5 minutes) western blot exposure time, which is necessary to visualize
unubiquitinated and monoubiquitinated "Met4 as separate species due to similarities in their molecular weights.
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The altered pattern of autoubiquitination nevertheless
provides evidence of a profound intrinsic (independent
of SCF) difference between the activities of " Cdc34
and Cdc34.

We next sought to analyze the activity of "Cdc34 in
the presence of SCF E3. We obtained similar results
with full-length “Cdc34 and C-terminally truncated
MCdc34***, However, only in experiments with C-term-
inally truncated proteins terminated at residue 244
could we compare the activities of ""Cdc34 and Cdc34
to the activity of “'*Cdc34 due to the poor solubility of
full-length 2'*Cdc34. In SCF“““*-dependent assays with
MCdc34>**, high molecular weight species of the Sicl
substrate (indicative of its polyubiquitination; Sic1-Ub,)
are visualized via western blot with a-Sicl antibodies
only after long incubation times, exceeding by at least 12-
fold (> 60 vs. 5 min) the time necessary to detect Sicl
modified by Cdc34*** (Figure 3C, lanes 5-8, 1-4).
"MCdc34** is as defective as *'*Cdc34>** in the formation
of high molecular weight Sicl species and both mutant
E2s catalyze a similar accumulation of Sicl monoubiquiti-
nated on one (Sicl-Ub,) or two (Sicl-Ub,) lysines (Figure
3C, lanes 5-8, 9-12 and data not shown). Monoubiquitina-
tion of additional lysines on Sicl can be observed in the
presence of high Cdc34 concentrations (1-3 uM;
[8,9,29,30]) that exceed by about 10-fold the estimated
concentration of Cdc34 in cells [31]. We also tested polyu-
biquitination of FMet4, the SCF™**°-dependent substrate
modified on a single lysine residue K163 in vivo [32] and
in vitro [33]. Western blot with a-Flag antibodies visua-
lizes polyubiquitinated forms of "Met4 after 5 minutes of
reaction with Cdc34>**, but 30 minutes are needed for
similar polyubiquitination by "Cdc34**, suggesting a rate
at least 6-fold slower (Figure 3D; o-"Met4, lanes 1-5 and
6-10, FMet4-Ub,). In contrast, western blot with a-Flag
antibodies does not detect polyubiquitinated "Met4 even
after 60 minutes of incubation with #*2Cdc34*** (Figure
3D; a-"Met4, lanes 11-15, "Met4-Ub,,), suggesting that
A12Cdc34°* is less active than "™Cdc34***. This difference
reflects a difference in the synthesis of polyubiquitin chain
on monoubiquitinated "Met4, as monoubiquitinated
FMet4 appears with a similar rate in reactions with
™Cdc34*** and 2'*Cdc34*** (Figure 3E; due to similarities
of the apparent molecular weights, unubiquitinated and
monoubiquitinated forms of "Met4 are detectable as sepa-
rate species only under short western blot exposure
times). This observation agrees with the finding that dele-
tion of the loop does not affect substrate monoubiquitina-
tion by Cdc34 [18].

In summary, “"Cdc34 is normally charged with ubi-
quitin thiolester and monoubiquitinates substrates in a
manner similar to wild type Cdc34 and “'*Cdc34. How-
ever, either the loop deletion or the motif replacement
compromises substrate polyubiquitination by Cdc34.
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Unlike in reactions with Cdc34, SCF*“* stimulates the
synthesis of free polyubiquitin chains by *Cdc34 only
modestly and in a manner dependent on substrate
recruitment

We next addressed how the defect in substrate polyubi-
quitination by ‘"Cdc34 relates to the synthesis of free
polyubiquitin chains in vitro. The in vitro synthesis of
free polyubiquitin chains by wild type Cdc34 is an
acknowledged aspect of its function [18,21,34-36].

We first tested the accumulation of free polyubiquitin
chains under conditions of a standard ubiquitination
assay with wild type Cdc34 and SCF“I“*, Western blot
analysis performed with antibodies specific to ubiquitin
detects large amounts of high molecular weight polyubi-
quitin conjugates in the absence but not presence of the
Sicl substrate (Figure 4A, a.-Ub WB, lanes 4 and 3).
Only the more sensitive western blots with a-Sicl and
o-Cdc34 antibodies can visualize the low amounts of
polyubiquitinated Sicl and Cdc34 present in the same
reaction mixtures (Figure 4A, o-Sic and a-Cdc34 WBs).
The polyubiquitin conjugates detectable with o.-Ub anti-
bodies cannot represent polyubiquitinated Sicl because
they appear in mixtures lacking Sicl (Figure 4A, com-
pare a.-Ub and a-Sicl WB, lane 4). The polyubiquitin
conjugates detectable with a-Ub antibodies cannot
represent polyubiquitinated Cdc34, as similar amounts
of polyubiquitinated Cdc34 are detectable in the mix-
tures containing or lacking these conjugates (Figure 4A,
compare a-Ub and a-Cdc34 WB, lanes 3 and 4). To
verify that these species represent free polyubiquitin
chains, we tested whether they are sensitive to Isopepti-
dase T (IsoT), which disassembles polyubiquitin chains
in a manner dependent on the free C-terminus [37].
Most of the conjugates that are detectable by western
with a-Ub antibodies disappear upon incubation with
IsoT (Figure 4B; o.-Ub WB, lanes 1-4), verifying that
they represent free polyubiquitin chains. Wild type
Cdc34 thus synthesizes super-stoichiometric amounts of
free polyubiquitin chains in the presence of SCF“** and
substrate recruitment prevents this process, presumably
by re-directing the polyubiquitination activity to
substrate.

In contrast, SC stimulates the synthesis of free
polyubiquitin by "*Cdc34 only modestly and in a manner
dependent on the Sicl substrate (Figure 4A, o.-Ub WB,
compare lane 7 and 8). The ubiquitin conjugates detect-
able with a-Ub antibodies in reactions with ""Cdc34
likely represent free polyubiquitin chains, because the
same o.-Ub western blot conditions prevent detection of
substrate-attached polyubiquitin chains in reactions even
with the more active Cdc34 (described above). We did
not verify that the high molecular weight ubiquitin con-
jugates visualized by a.-Ub western blot in ""Cdc34-
dependent reactions are sensitive to IsoT, because the

FCdC4
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Figure 4 The synthesis of free polyubiquitin chains in vitro and in vivo. (A). Regulation of free polyubiquitin chain synthesis by substrate
recruitment to SCF<®““. Standard ubiquitination reactions with Cdc34 or ™Cdc34 (5 pmol) were analyzed by western blots with a-Ub, a-Sicl or
a-Cdc34 antibodies. (B). IsoT sensitivity. Reactions as in A lanes 4 and 8 were analyzed for IsoT sensitivity (Methods). (C). Levels of ubiquitin and
ubiquitin conjugates in vivo. Boiled cell extracts (Methods) were analyzed by western blot with a-Ub (Covance) or a-Rpn10 antibodies. Lane 4:
200 ng of free polyubiquitin chains Ub; 4 purchased from Enzo. (D). Growth of "™CDC34 but not CDC34 yeast is sensitive to loss of UBPT4.
Haploids with the indicated genotypes were selected on haploid selection media with G418 and nourseothricin at 30°C for three days. (E).
Overexpression of Ubp14 but not Ubp15“*** supports growth of ™CDC34 upb144 yeast. Heterozygous diploids (RC171 and RC172) were
transformed with the indicated plasmids that overexpress Ubp14 (pUBP14) or pr14C354A (pUBP14-C354A), patched onto sporulation media and
incubated at 26°C for five days. Haploids with the indicated genotypes were selected as in D. (F). Accumulation of ubiquitin conjugates in yeast
extracts enriched with Ubal, ubiquitin, ATP and MgCl,. Extracts with active ubiquitin-proteasome system (10 pg of total proteins; see Methods)
were enriched with Ubal (10 pmol), ubiquitin (1.3 nmol) ATP (2 mM) and MgCl, (2 mM), incubated at 25°C for the times indicated and analyzed
by 10% or 18% SDS-PAGE followed by a-Ub (Sigma) or a-Rpn10 WB.

necessity for additional dilution in preparation for IsoT
treatment (see Methods) prevents their detection.

In summary, Cdc34 synthesizes super-stoichiometric
amounts of free polyubiquitin in the presence of
SCFI“* and substrate recruitment is sufficient to pre-
vent this process. This regulatory mechanism is dis-
rupted in reactions with ‘"Cdc34, which synthesizes
fewer free polyubiquitin chains and in a manner depen-
dent on, not attenuated by, substrate recruitment.

'MCDC34 cells have fewer polyubiquitin conjugates in
vivo, but their disassembly depends on the Ubp14 C-
terminal ubiquitin hydrolase

To test whether "Cdc34 protein is defective in ubiqui-
tin conjugation in vivo, we first performed western blot
analysis with o-ubiquitin antibodies of whole cell
extracts prepared by direct boiling of “?CDC34 cells in
SDS-PAGE loading buffer. This procedure leads to rapid
denaturation of proteins, including proteasome and
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ubiquitin proteases, and is therefore likely to extract
intact ubiquitin conjugates. In these experiments,
"CDC34 cells have fewer ubiquitin conjugates of a
broad molecular weight than CDC34 cells (Figure 4C,
10% PAGE, lanes 1 and 2; Ub,-Ub,,). This difference is
not accompanied by an accumulation of short polyubi-
quitin chains and the levels of ubiquitin are similar in
both extracts (Figure 4C, 18% PAGE, lanes 1 and 2;
Ub,_4; Uby). The control western blot performed with
o-Rpnl0 antibodies verifies that equal amounts of total
proteins were analyzed (Figure 4C, a.-Rpnl0). A reduc-
tion in ubiquitin conjugates but not ubiquitin levels is
thus detected by analysis of the total ubiquitin conju-
gates in “"CDC34 yeast.

The patterns of ubiquitin conjugates detectable in
CDC34 and, to a lesser degree, in ""CDC34 cells are
similar and involve species of various molecular
weights (Figure 4C, 10% PAGE, lanes 1 and 2; Uby-
Ub,). To assess whether these species represent ubi-
quitin conjugated to substrates or free polyubiquitin,
we sought to test how their pattern changes upon
deletion of the UBPI4 gene, which encodes the only
yeast ubiquitin hydrolase that disassembles polyubiqui-
tin in a manner dependent on the free C-terminus
[37,38]. In the absence of UBP14, free polyubiquitin
species would be expected to accumulate in the form
of short chains composed of 2-6 ubiquitins, as only
longer chains are efficiently disassembled by other
DUBs, while the pattern of ubiquitin conjugated to
substrates should not change unless the levels of free
ubiquitin drop [38]. The high molecular weight ubiqui-
tin conjugates (Ub,) detectable in extracts prepared
from CDC34 yeast are poorly detectable in extracts
prepared from CDC34 upbi4A yeast (Figure 4C, 10%
SDS-PAGE, Ub,, lanes 1 and 3). The loss of ubiquitin
conjugates correlates with an appearance of short Ub,.
6 chains but not a change in ubiquitin level (Figure 4C,
18% SDS-PAGE, Ub, ¢, Uby, lanes 1 and 3). Free poly-
ubiquitin chains thus represent a prominent fraction of
the total ubiquitin conjugates in wild type yeast, at
least during vigorous growth. A more accurate estima-
tion is not possible based on these data alone, because
western blot detection is not quantitative and the
available a-ubiquitin antibodies have different affinities
to short and long polyubiquitin chains.

If a significant fraction of the total ubiquitin conju-
gates detectable in CDC34 yeast extracts are free polyu-
biquitin chains, the lower level of similarly sized
ubiquitin conjugates in “”CDC34 yeast (Figure 4C, 10%
SDS-PAGE, lanes 1 and 2) could indicate that “”CDC34
yeast have fewer free polyubiquitin chains of similar
lengths. In this case, fewer short Ub, ¢ conjugates
should be detectable in “”CDC34 cells lacking UPB14.
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Unexpectedly, this simple prediction could not be
tested, because unlike wild type yeast, which are viable
in the absence of U/BPI14, the “"CDC34 ubpl4A double
mutant yeast are inviable (Figure 4D, “"CDC34 upb14A
and CDC34 upbl14A). This lethality is corrected by ecto-
pic expression of Ubpl4 but not an inactive Ubp14
C354A mutant (Figure 4E), verifying the requirement
for Ubp14 function. Thus, “?CDC34 cells have fewer
polyubiquitin conjugates in vivo, but these conjugates
can be disassembled only by Ubp14.

To get an insight into the Ubp14 dependence, we pre-
pared cell extracts in a manner retaining activity of the
ubiquitin-proteasome system (Methods). This procedure
is more time consuming than extraction by cell boiling
and does not include protease inhibitors. The extracts
therefore do not retain the ubiquitin conjugates that
were present in cells prior to lysis, leading to similarly
low backgrounds in the isogenic CDC34 and ""CDC34
yeast, and in the isogenic UBP14 and ubpl4A yeast
(data not shown). Instead of inhibiting DUBs, we then
attempted to overwhelm their activity by supplementing
the extracts with purified Ubal, Ub, ATP and MgCl,,
which should maximize the ubiquitin conjugation activ-
ities of E2s and E3s in the extracts. As expected, the
supplementing components alone are insufficient to
conjugate ubiquitin (Figure 4F, a-Ub, lanes 5, 10, 15,
20), but stimulate an accumulation of similar amounts
of ubiquitin conjugates in the control extracts prepared
from CDC34 yeast, or the isogenic UBP14 or ubpl4A
yeast (Figure 4F, 10% PAGE, a-Ub, lanes 1-5, 11-15 and
16-20). We have thus created conditions under which
the lack of Ubpl4 activity plays no major role in the
accumulation of high molecular weight ubiquitin conju-
gates. Under these conditions, more of high molecular
weight ubiquitin conjugates accumulate in "”CDC34
yeast extract (Figure 4F, a-Ub WB, 10% PAGE, Ub,,
lanes 1-5, 6-10, 11-15 and 16-20). This effect is repeti-
tive and the control western blot with a.-Rpn10 antibo-
dies verifies that equal amounts of total proteins were
analyzed (Figure 4F, a-Rpnl0).

It cannot be excluded that the 4-fold higher levels of
™Cdc34 protein (Figure 2E) plays a role in the abnor-
mal accumulation of high molecular weight ubiquitin
conjugates in "”"CDC34 yeast extract. However, this
interpretation would be inconsistent with the defective
function of "Cdc34 in vivo (Figure 4C, lanes 1, 2). A
more likely explanation is that the polyubiquitin conju-
gates accumulate due to a delay in their disassembly by
DUBs other than Ubp14. If a similar delay characterizes
the polyubiquitin conjugates synthesized in “"CDC34
cells, their disassembly could be primarily dependent on
C-terminal hydrolysis, explaining the essential role of
Ubpl4.
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Phosphorylation of C-terminal serines in "Cdc34 by Cka2
kinase eliminates the synthesis of free polyubiquitin
chains, likely by stimulating their attachment to substrate
Among the genes recently identified as essential for
growth of ””CDC34 but not CDC34 yeast is CKA2 [22]
that encodes the catalytic subunit of casein kinase 2
implicated in Cdc34 function [23,24]. To address how
Cka2 affects ""Cdc34 activity, we first tested whether
GstCka2, or its homologue “*‘Ckal, purified from yeast
can phosphorylate Cdc34 and "“Cdc34 in vitro, and
whether the in vitro phosphorylation of Cdc34 or
'™MCdc34 is limited to the most C-terminal serines [23]
(Figure 5A, red), or also targets the catalytic E2 core
[24] (Figure 5A, bold black).

Deletion of the C-terminus (Figure 5B, lanes 1-4), or
replacement of the six C-terminal serines with alanines
(Figure 5B, 6SA; lanes 5-10) prevents phosphorylation of
Cdc34 by “*'Ckal. Extended autoradiogram exposure
times are required to detect phosphorylation of the
Cdc34°* mutant and this level of phosphorylation is com-
parable to the control phosphorylation of BSA (Figure 5B,
lanes 5-10, 4 and 17 days). Only the six most C-terminal
serines are thus phosphorylated within full length Cdc34.
Charging Cdc34 with an ubiquitin thiolester under
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conditions that prevent discharge also does not trigger
phosphorylation of the E2 core (data not shown).

Similarly, “*Cka2 phosphorylates the six most C-
terminal serines in Cdc34 (data not shown), or the two
most C-terminal serines $207 and $216 in Cdc34>**
over a range of concentrations Figure 5C, lanes 1-8).
GstCka2 phosphorylates Cdc34*** and "™Cdc34>** with
similar kinetics (Figure 5C, lanes 9-16), suggesting that
the phosphorylation is not affected by the motif replace-
ment. We do not observe phosphorylation of the control
Rad6 E2 even under conditions of 50-fold greater sensi-
tivity of [*?P] detection (Figure 5C, lane 21), verifying
that “*'Cka2 function is specific to Cdc34. Only under
conditions of such sensitivity, we could detect a low
level of phosphorylation of Cdc34*** or "™Cdc34*** car
rying the S207A and S216A substitutions (Figure 5C, 43
h, lanes 18, 20). This signal represents ~1% of that asso-
ciated with phosphorylation of S207 and S216 (Figure
5C, lanes 17, 19 and graph), does not account for quan-
titative phosphorylation of any other two serines, and
was not observed with full-length Cdc34°** protein (Fig-
ure 5B, lanes 5-10).

Phosphorylation of “™Cdc34 by “*'Cka2 kinase mod-
estly stimulates the SCF“*-dependent ubiquitination of
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Figure 5 Yeast ®‘Ckal or ®'Cka2 kinases phosphorylate only the most C-terminal serines in Cdc34 and "™Cdc34. (A). Scheme of Cdc34.
Red: the six most C-terminal serines. Residue 244 represents the C-terminal end in Cdc34?* that includes the E2 catalytic core (a.a. 1 to 170)
with the active site cysteine C95, the E3 RING domain-interacting fragment, and the 39 a.a. C-terminal fragment (a.a. 171-209) also implicated in
binding to SCF. (B). In a physiological range of protein concentrations, yeast “'Ckal phosphorylates only the six most C-terminal serines within
Cdc34. 1 hour assays included 10 pM ATP with 0.1 p Ci of [y—32P]ATP (4500 Ci/mmol), 1 pmol of the indicated Cdc34 constructs and 0.5 or 2.5
pmol of “*'Cka1. (C). ®*'Cka2 phosphorylates the 5207 and S216 most C-terminal serines in Cdc34*** and "™Cdc34°*. Assays were performed for
1 hour (or as indicated), with 5 pmols (or as indicated) of the indicated constructs, Tpmol of G'Ckal kinase and 10 UM ATP with 5 uCi *?P] ATP
(4500Ci/mmol), leading to ~50-fold higher sensitivity of [*?P] detection than in B. Graph: quantitation of the %P] signal of the proteins at
different autoradiogram exposure times. CB: Coomassie blue.
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the Sicl substrate (Figure 6A a-Sicl WB, compare lanes
1-4 and 5-8). This effect leads to a nearly normal accu-
mulation of polyubiquitinated Sicl species in 60 min-
utes, which is a long reaction time (Figure 6A, o-Sicl
WB, lanes 7, 11 and 15). However, even in the presence
of %*'Cka2 fewer polyubiquitinated Sicl species accumu-
late in short reactions with ""Cdc34 than with Cdc34
(Figure 6A, a-Sicl WB, compare lanes 6, 10 and 14).
The short reaction times are critical because they repre-
sent the time in which substrate degradation needs to
be catalyzed in vivo. Cka2 thus stimulates, but does not
fully rescue, the defective polyubiquitination activity of
"Cdc34. This observation agrees with the finding that
“"CDC34 yeast, which have active Cka2, accumulate
fewer polyubiquitin conjugates than CDC34 yeast (Fig-
ure 4C, lanes 1 and 2).

The stimulation of Sicl substrate polyubiquitination
by “*'Cka2 correlates with a loss of free polyubiquitin
chains in the same reaction mixtures (Figure 6A, a.-Ub
WB, compare lanes 3 and 7, arrows; see Figure 4A and
4B for verification that under the conditions used o.-Ub
western blot visualizes only free polyubiquitin chains).
Phosphorylation of C-terminal serines in “"Cdc34 thus
may eliminate the synthesis of free polyubiquitin chains
by promoting their attachment to substrate. To assess
which of these effects plays a role in vivo, we tested
whether overexpression of the Ubp14 C-terminal hydro-
lase rescues viability of “””CDC34 cka2A yeast. Overex-
pression of Ubpl4 or its catalytically inactive mutant
does not support growth of “CDC34 cka2A yeast (Fig-
ure 6B), suggesting that the requirement for Cka2 func-
tion is not associated with its role in preventing the free
polyubiquitin chain synthesis. Rather, it reflects the role
in the stimulation of substrate polyubiquitination.

In control reactions with wild type Cdc34, “*'Cka2
has no effect on the SCE““*-dependent polyubiquiti-
nation of Sicl substrate (Figure 6A, o.—Sicl WB, com-
pare lanes 9-11 and 13-15). However, “*Cka2 prevents
the synthesis of free polyubiquitin chains in substrate-
free reactions with SCE€4“* (Figure 6A, a-Ub WB,
lanes 12 and 16, green arrows). This effect is detect-
able only in substrate-free reactions, excluding the pos-
sibility that it results from redirecting the synthesis of
polyubiquitin chains to substrate. Rather, it reflects a
mechanism aimed at inhibiting the unproductive ubi-
quitin conjugation to free polyubiquitin chains typical
of Cdc34 function with substrate-free SCFs. Under
conditions of in vitro assays performed with low con-
centration of ubiquitin, or with an access of SCFC4¢*
over substrate, this regulatory effect could indirectly
promote substrate polyubiquitination by preventing
rapid depletion of free ubiquitin. These possibilities
could explain why under some experimental conditions
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the phosphorylation of wild type Cdc34 could stimu-
late Sicl polyubiquitination [23].

Discussion

Robust polyubiquitination activity is thought to be key
to the function of the Cdc34 ubiquitin-conjugating
enzyme that, together with the SCF ubiquitin ligases,
promotes degradation of proteins involved in cell cycle
and growth regulation. However, we find that the
‘™Cdc34 protein in which the $73/597/loop motif is
replaced with the K73/D97/no loop motif typical of
other E2s supports yeast growth with normal cell size
and cell cycle profile despite producing fewer polyubi-
quitin conjugates in vitro and in vivo. The significance
of this finding comes from the observation that the in
vitro defect in Sicl substrate polyubiquitination by
'MCdc34 is similar to the defect of #'*Cdc34 protein
that cannot support growth, and that “”CDC34 yeast
contain fewer polyubiquitin conjugates in vivo than
CDC34 yeast, despite 4-fold higher steady-state levels of
*MCdc34 protein. While several cofactors are implicated
in the function of "™Cdc34 in vivo [22], these cofactors
thus do not ensure normal ubiquitin conjugation in
“CDC34 yeast.

If robust polyubiquitination is not necessary for Cdc34
function in vivo, a yet undefined aspect of the SCF-pro-
teasome pathway would be expected to promote sub-
strate proteolysis under conditions of compromised
polyubiquitination. In support of this possibility,
“CDC34 yeast are sensitive to loss of the RPNI10 and
RAD23 genes [22] that encode ubiquitin-binding recep-
tors of the proteasome implicated in Sicl degradation
[25,26]. If SCFC4* indeed directly interacts with the
proteasome, as one study suggests [39], this interaction
could localize “"Cdc34 and substrate to the proximity of
the Rpnl0 and/or Rad23, thereby compensating for the
lack of robust polyubiquitination. This model is outlined
in Figure 7. However, it cannot be excluded that the
defect in "Cdc34 is corrected at the proteasome: for
example, in a manner dependent on the ubiquitin-inter-
acting motif (UIM) of Rpnl0 recently implicated in
polyubiquitination [40,41]. An insight into which of
these models reflects “™Cdc34 function in “”CDC34
yeast could come from analysis of the kinetic properties
(K and keoy) of ™Cdc34 protein in vitro, and from test-
ing how Rpnl0, and Rad23, individually or as part of
the proteasome, affect these properties.

The observation that the catalytic E2 core motifs
define distinct mechanisms of function and regulation is
consistent with their conservation. However, their analy-
sis in the context of a single E2 that collaborates with
only one class of E3s provides the first direct evidence
that the E2 motifs control the robustness and regulation
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of polyubiquitination. What predictions could be made
based on this finding for the role and regulation of
other E2s? The most obvious prediction is that the alter-
native motif would support well the function of the E2s
that catalyze monoubiquitination, a process that is not
related to protein degradation but yet regulates several
aspects of cell biology, including endocytosis [42], chro-
matin remodeling [43] and DNA damage response
[44,45]. An example of such an E2 is Rad6, which
monoubiquitinates histones and PCNA. The second pre-
diction is that the alternative motif has the potential to
support not only monoubiquitination, but also polyubi-
quitination, at least in reactions with some E3 partners.
However, the mechanism of polyubiquitination catalyzed
in a manner dependent on each motif would be differ-
ent. In support of this possibility, two major self-oligo-
merization schemes linked to an activation of
polyubiquitination emerge from analyses of the E2s that
differ in their motifs. The Cdc34/Ubc7-like Ube2g2 E2
self-oligomerizes via a RING-independent interaction
with its gp78 E3 partner [46]. In contrast, the Ubc5-like
E2s, which carry the K73/D97/no loop motif, self-oligo-
merize in a way dependent on the RING domain and
non-covalent binding between ubiquitin and several
residues located opposite the active site [47-50]. Finally,

Cdc34 has a high preference for lysine K48 that is inde-
pendent of its SCF E3 partner [51-53], but other E2s
have lower intrinsic fidelity in lysine selection and fre-
quently collaborate with E3s that define the lysine speci-
ficity [53,54]. The low intrinsic fidelity in lysine
selection could thus be an evolutionary adaptation that
is associated with the K73/D97/no loop motif and that
allows the synthesis of different linkages depending on
the E3 context. In this view, the alternative motif could
have evolved to provide a basis for the diversity of poly-
ubiquitin linkages and signaling, while the original motif
would have been selected based on the robustness of
K48-type of polyubiquitination.

If the motif replacement in Cdc34 lowers the fidelity
of lysine selection during polyubiquitin chain synthesis
and SCF®“* did not evolve to correct for this change,
then polyubiquitin chains synthesized by "Cdc34 could
have altered and/or branched linkages instead of, or in
addition to, the K48 type of polyubiquitin typical for
Cdc34. This model could explain why "“CDC34 yeast
are sensitive to loss of Ubp14, which is the only DUB
that cleaves polyubiquitin in a manner independent of
the Ub-Ub linkage [55,56], and why DUBs other than
Ubp14 disassemble polyubiquitin conjugates less effi-
ciently when they are produced in “"CDC34 cell
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extracts. A similar delay could cause ubiquitin depletion
and/or create conditions under which abnormal polyubi-
quitin chains potently block the proteasome even with-
out massive accumulation [53]. Ubp14 function is not
required in yeast [[38], this work], but an inhibition of
ubiquitin receptors at the proteasome by an excess of
free polyubiquitin [57] is thought to be responsible for
the developmental defects associated with Ubpl4
absence in multi-cellular organisms, including D. discoi-
deum [58] and A. thaliana [59].

What linkages are present in polyubiquitin chains
synthesized by "“Cdc34 protein in vitro and in vivo, and
whether the same linkages are present in substrate-
attached and free polyubiquitin are yet unknown. These
questions would best be addressed by quantitative mass
spectrometry, as ubiquitin mutants could additionally
affect the already fragile ""Cdc34/SCF interaction inter-
face (Figure 1B and 1C), which is sensitive to loss of
phosphorylation within the C-terminus of “*Cdc34 and
does not properly respond to the regulation by substrate
recruitment. What is the basis of the functional commu-
nication between the seemingly independent E2 and
substrate-interacting domains of SCF®I* is yet
unknown, but a similar communication is suggested by
the observation that substrate recruitment promotes
modification of the Cull homologue of Cdc53 with the
Nedd8 ubiquitin-like protein, leading to E2 activation
[60]. Phosphorylation would potentiate the acidic nature
of the C-terminus, but how the C-terminus of Cdc34 or
"™Cdc34 participates in the mechanism of polyubiquiti-
nation is also unclear, as the C-terminus is absent from
all known E2 structures (Figure 1C, gray arrow). Why is
Cka2, and not Ckal, essential in “”CDC34 yeast if each
kinase phosphorylates the six most C-terminal serines in
"™Cdc34 in vitro? Ckal and Cka2 could differ in their
times or levels of expression, or localizations, or an
undefined feature could give Cka2 a regulatory advan-
tage in “"CDC34 cells.

Perhaps the most interesting question raised by our
study is why the Cdc34/Ubc7-specific motif evolved at all
if its replacement in Cdc34 has only a minimal effect on
cell growth and division? It is possible that either motif
can support Cdc34 function under typical laboratory
conditions, but the mechanism defined by the original
motif is better for survival under sub-optimal and/or
stress conditions. As the only E2 essential for yeast viabi-
lity and an E2 that has the largest number of substrates
known, Cdc34 would likely be required to function under
a variety of growth conditions. However, we cannot elim-
inate the possibility that the motif conservation reflects
its ability to undergo post-transcriptional regulation that
controls Cdc34 activity and/or levels. This possibility is
suggested by the presence of serine residues in the 73/
S§97/loop motif and by the finding that the steady-state
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level of "™Cdc34 is increased by about four-fold in a
strain isogenic to CDC34 yeast. This change is significant,
as the steady-state levels of Cdc34 do not change during
the cell cycle [5] and are unaffected by replacement of all
lysines to arginines that prevents autoubiquitination [28].
Furthermore, even a five-fold enrichment of Cdc34 in
mammalian cells is sufficient to inhibit an association of
CENP-E with kinetochores and to either delay or block
metaphase alignment of chromosomes [61,62]; and a
similar 4-fold accumulation of Cdc34 has been linked to
the development of pediatric T-cell acute lymphoblastic
leukemia [63]. If such a modest increase in Cdc34 levels
disregulates cell growth and division, a role of the $73/
§97/loop motif in the control of Cdc34 activity and/or
levels could play a role in its conservation. It will be of
great interest to determine what aspect of the catalytic
E2 motif function and/or regulation is responsible for its
conservation.

Conclusions

Replacement of the catalytic $73/597/loop motif that is
conserved among all members of the Cdc34/Ubc7
family with the K73/D97/no loop motif present in other
E2s compromises the polyubiquitination activity of
Cdc34 in vitro and in vivo, and alters its regulation.
However, either motif can support the essential function
of Cdc34 in cell growth and division, at least under typi-
cal laboratory conditions, raising the question of what is
the basis for the motif conservation. We discuss the
possibility that growth under suboptimal and/or stress
conditions, or a requirement for stringent regulation of
Cdc34 levels via the serine residues present in the motif
could explain the motif conservation. We predict that
future analysis of the cellular pathways that are sensitive
to the motif replacement will answer the question of the
motif conservation and may define new roles and/or
regulatory aspects of Cdc34. The essential role of Cka2,
Rpn10 and Rad23 in ”"CDC34 yeast [22] also opens the
possibility to define the still enigmatic role of these
cofactors in the SCF-proteasome pathway.

Materials and methods

Yeast Strains and their construction

All strains and their full genotypes are listed in Table 1.
Standard methods were used for strain construction
[64]. Strains RC171, RC172, RC173, and RC174 were
constructed as described in [22].

Plasmids
see Table 2.

Antibodies
We used a-FLAG M2 and a-Ub (Sigma), o.-Ub and a.-
HA (Covance), a-Cdc34 [28], a-BPSic1, a-*'Rpn10
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Table 1 Yeast strains used in this study
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Strain Genotype Reference

862 MATa dsk2:Kan® his3A1 leu220 met15A0 ura3A0 [73]

3195 MATa ubp14:Kan® his3A1 leu20 met15A 0 ura3/0 [73]

13195 MATa ubpi4:Kan® his3AT leu20 met15/0 ura320 [73]

BL2 MATa [22]

EJ758 MATa his3-A200 leu2-3,112 ura3-52 pep4:HIS3 pYEX4T-+rec:CKAT [74]

(YILO35¢)

EJ758 MATa his3-A200 leu2-3,112 ura3-52 pep4:HIS3 pYEX4T-+rec:CKA2 [74]

(YORO61W)

FY24 MATo ura3-52 trpi-463 leu2-Al F. Winston

FY78 MATa his3A200 F. Winston

KS418 MATa CDC34™ura3 leu2 trpl lys2 ade2 ade3 [22]

MT1901 MATa mfalA:pMFAT-HIS3 canlA ura30 leu2A0 his3AT lys2A0 M. Tyers

RC6 MATa CDC34"™(NAT1) ura3 leu2 trpl ade2 ade3 [22]

RC21 MATa/ac CDC34"(NAT1)/CDC34 ura3/ura3 leu2/leu2 trp1/TRP1 lys2/LYS2 ade2/ADE2 ade3/ADE3 his3/HIS3 MFA1/mfal/: [22]
PMFAT-HIS3 can1/CAN1

RC29 MATar cdc34tm(NAT1) mfalAipMFAT-HIS3 his3A ura3A leu2/ canlA [22]

RC94 MATaCDC34(NATT) mfalA:pMFAT-HIS3 his3AT leu2A0 ura340 canlA [22]

RC85 MATa CDC34"™(NAT1) [22]

RC171 MATa/or CDC34™(NATT)/CDC34 ubpi4::KanR/UBP 14 mfalA:pMFAT-HIS3/MFAT his34/his3A ura3/ura340 leu2/leu2/0 canl/ This study
CANT met1500/MET15

RC172 MATa/or CDC34NATT)/CDC34 ubp14:Kan"/UBP14 mfalA:pMFAT-HIS3/MFAT his34/his3A ura3/ura320 leu2/leu2A0 can1/CANT — This study
met15A0/MET15

RC173 MATa/ae CDC34™(NATT)/CDC34 cka2:Kan®/CKA2 mfalA:pMFAT-HIS3/MFAT his34/his3A ura3/ura340 leu2/leu20 can1/CANT — This study
met15A0/MET15

RC174 MATa/or CDC34(NAT1)/CDC34 cka2:Kan®/CKA2 mfalA:pMFAT-HIS3/MFAT his34/his3A ura3/ura3A0 leu2/leu2/0 can1/CAN1 This study
met15A0/METT15

RC175 MATa/ac CDC34"™(NAT1)/CDC34 rps7b:Kan/RPS7B mfal A:pMFAT-HIS3/MFAT his30/his3A ura3/ura3A0 leu2/leu2/0 canl/CANT [22]
met15A0/MET15

RC176 MATa/o. CDC34(NATT)/CDC34 rps7b::KanR/RP57B mfalA:pMFAT-HIS3/MFAT his3A/his3A ura3/ura3/0 leu2/leu2/0 can1/CANT [22]
met15 O/MET15

YL10-1 MATa cdc34-2 leu2Al ura3-52 trp1463 his3A Gal+ 7

and a-°*'Skpl [65]. Antibody detection was by ECL
(Amersham).

Recombinant proteins and protein complexes

We used: apyrase, ubiquitin and methylated ubiquitin
(Sigma); Lys48-linked multiubiquitin chains and Isopetidase
T (Enzo Research); yeast Uba1* [9]; baculoviruses expres-
sing yeast Sicl, CIb5, Cln2H4, G5tCdc28, Cdc53, Rbx1, Cdcd,
SstSkp1, M%8Skp1 [8,10], and HAMet30 [33]; C-terminal His6

Table 2 Plasmids used in this study

fusion (pET21+; Novagen) of full length Cdc34 [29],
™Cdc34 (triple mutant with the K73/D97/A12 instead of
the $73/597/loop motif, this work), Cdc34°5* (with $207,
216, 263, 268, 282 and 292A replacements) [23]; Cdc34>**
terminated at residue 244 [29], "™Cdc34%** and #'2Cdc34**
(this  work); S207,216Ach34244, tm,5207,216ch34244’
95ACdc34, 5*7FCdc34, Cdc34'7°, Radé6 (this work).

SCF, Sicl and CIn2 complexes were assembled by co-
infecting SF9 insect cells (Invitrogen) for 40 hours with

Plasmid Description Reference
pYL150 2um, LEU2, Amp', GAL10 promoter +CDC34 7]
pYL19 pYL150 with S97D mutation in CDC34 [17]
pYL27 pYL150 with 12-residue deletion of G-103 to T-114 in CDC34 [17]
pYL29 pYL150 with 12-residue deletion of G-103 to T-114 and S73K and S97D mutations in CDC34 [17]
pUBP14 ADH1 promoter and terminator elements + UBP14 in pVT102-U [38]
pUBP14-Ala354 ADH1 promoter and terminator elements +catalytically inactive UBP14(C354A) mutant in pVT102-U [38]
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the appropriate baculoviruses, followed by cell lysis and
immunoprecipitation [8]. Sicl was phosphorylated as
described previously [8].

All His-tagged proteins were expressed in E. coli
(BL21 DE3 LysS) and purified on NTA resin (Qiagen)
followed by DEAE and HPLC gel filtration chromatogra-
phy on Superdex 200 (Amersham) in U buffer (50 mM
Tris, pH 7.5, 50 mM KCl, 0.2 mM DTT).

G5'Ckal and “*'Cka2 kinases were purified from yeast
extracts prepared from cells harvested after 3 hours of
treatment with 1 mM CuS0,4 during logarithmic growth
on SD URA medium and blast-frozen in a 1:0.7 ratio of
U buffer with 10% glycerol, protease and phosphatase
inhibitors. 1 mg of total proteins was diluted to 1 ml
with N buffer (50 mM Tris, pH 7.5, 150 mM NaCl,
0.5% Igepal, 0.1 mM DTT with protease and phospha-
tase inhibitors), incubated at 4°C with 20 ul of G°™
Sepharose (Sigma) for 30 minutes, followed by beads
wash, equilibration with U buffer and elution with 40
mM gluthation in buffer U, leading to ~10 ng/ul of
GstCkal or “*'Cka2.

Ubiquitination and phosphorylation in vitro
Ubiquitination was performed at 25°C for 1 hour or as
indicated in 10 pl containing buffer U with 1 mM ATP,
1 mM MgCl,, 1 pmol of Ubal, 660 pmols of Ub, 2
pmol of FR8SCFCdet op GStGCFMe30 (where indicated), 2
pmol of Sic1/Cln5/9*'Cdc28 or FMet4 substrate (where
indicated), and 1-5 pmol of the indicated Cdc34 proteins
as specified in figures. For phosphorylation the assays
included buffer U with 10 uM ATP and [**P] ATP
(ICN) as indicated, the indicated E2 protein constructs,
and “*'Ckal or 'Cka2. The reactions were analyzed by
WB or autoradiography.

Preparation of yeast extracts with active ubiquitin-
proteasome system

Yeast were grown at 30°C in 2 liters of YPD medium
[64] starting from OD 0.05 and harvested in the loga-
rithmic phase of growth. Yeast extracts (5-10 mg/ml
proteins) were prepared by grinding cells blast-frozen in
a 1:0.7 ratio of cells to buffer U (50 mM Tris, pH 7.5;
50 mM KCI; 0.2 mM DTT). The aliquots of extract
were frozen in liquid nitrogen and used immediately
after thawing. Note that this method does not preserve
polyubiquitin conjugates that have been made in cells
prior to lysis, because upon cell lysis in the absence of
protease inhibitors the polyubiquitin conjugates are
either degraded by the proteasome or disassembled by
ubiquitin proteases.

Detection of ubiquitin conjugates in yeast cells
To assess the steady-state levels of ubiquitin conjugates
in cells, yeast cells (2.5 x 10%) were boiled directly in
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(150 pl) SDS-PAGE loading buffer with B-mercaptoetha-
nol for 4 minutes at 100°C. Under such conditions,
most proteins, including the proteasome and ubiquitin
proteases (DUBs) are rapidly inactivated, therefore pre-
serving polyubiquitin conjugates that were present in
cells prior to lysis.

Western blot detection of super-stoichiometric amounts
of free polyubiquitin chains

The sensitivity of Western blot detection is restricted by
the concentration of the antibodies and the time of their
incubation with the antigen-bearing membrane. Western
blot performed with high concentrations of a.-Ub anti-
bodies (1:100 dilution) and/or for long incubation times
(> 2 hr) allows detection of even small amounts of ubi-
quitin (~100 pmol). Western blot performed with low
concentration of a-Ub antibodies (1:5000) and short
incubation times (< 30 minutes) can detect only large
amounts (pmol) of the same antigen. By varying these
parameters, we established western blot conditions that
allow detection of polyubiquitin chains only in amounts
exceeding the amount of polyubiquitinated Sicl (2
pmol), Cdc34 (a fraction of 4 pmol) and/or SCF subu-
nits (a fraction of 2 pmol) in the reaction mixtures that
were independently verified to contain polyubiquitinated
Sicl, Cdc34 and/or SCF subunits via western blots per-
formed with the more sensitive a-Sicl, a-Cdc34, o-
Cdc4 or a-Cdc53 antibodies. The inability of western
blots with a-Ub antibodies to detect polyubiquitinated
Sicl, Cdc34 and/or SCF therefore serves as an internal
control, which verifies that the a-Ub Western blots
allow detection of only super-stoichiometric amounts of
polyubiquitin conjugates. The free nature of these poly-
ubiquitin conjugates is independently verified by their
sensitivity to IsoT (see IsoT sensitivity assays).

Isopeptidase T sensitivity assays

Ubiquitination reactions were performed for 1 hour in
the presence of ATP/MgCl,, Ubal, Ub, full length
Cdc34 and SCF“* but not Sicl. 50% of the total ubi-
quitination mixtures were then incubated at 25°C for 10
minutes with apyrase (0.5 unit), which by hydrolyzing
ATP prevents function of the Ubal E1 and stops ubiqui-
tin conjugation, followed by enriched with DTT (10 mM
final) and incubation with Isopeptidase T (0.5 mg) for
additional 0-30 minutes. The reactions were stopped by
boiling with SDS-PAGE loading buffer, separated by
SDS-PAGE and analyzed by western blot with a-Ub
antibodies.

Structural modeling

Structural models of the E2 core (a.a. 1-170) of Cdc34
and "™Cdc34 are shown in the context of structures of a
scRad6 (gray ribbon representation; PDB ID 1AYZ; [66])
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and scUbc7 fragment (gray ribbon representation; PDB
ID 2UCZ; [67]). To model the ubiquitin-charged Cdc34
(a.a. 1-170) bound to the RING domain of Rbx1, scUbc7
structure (dark blue; PDB ID 2UCZ; [67]) was first
superimposed with the structure of Ubcl (light blue)
charged with ubiquitin (green; PDB ID 1FXT; [68]) and
with the structure of hUbc7 (not shown) in complex
with the RING of ¢-Cbl (not shown; PDB ID 1FBV;
[69]). The RING domain of c-Cbl was then used to
position the RING domain Rbx1 in complex with Cull
(red and yellow, respectively; PDB ID 1LDK; [70]). Note
that the E2 core domain (a.a. 1-170) used for modeling
does not include the 39 a.a. (a.a. 171-209) C-terminal
fragment unique to Cdc34 that would extend from the
alpha helix marked with a gray arrow. The amino acid
numbers refer to the position of the residues in Cdc34.
Models were done with the ICM program [71].

Cell cycle distributions
Yeast cells were analyzed by flow cytometry for their
DNA content using propidium iodide staining [72].
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