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Abstract

Background: The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient
kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as
mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons.

Results: Here we describe mitotic slippage in yeast bub2Δ mutant cells that are defective in the repression of
precocious telophase onset (mitotic exit). Precocious activation of anaphase promoting complex/cyclosome (APC/
C)-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but
not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-
chromatid separation and chromosome missegregation), in addition to telophase onset (mitotic exit), during
mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is
critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments.

Conclusions: The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate
mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase) causes mitotic slippage in SAC-activated
cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor
therapy with mitotic spindle poisons in humans.
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Background
The anaphase-promoting complex/cyclosome (APC/C)
is an E3 ubiquitin ligase that plays a major role in cell
cycle control by targeting substrates for proteasomal
degradation. The complex is activated by two WD40
activator proteins, Cdc20/Fizzy/Fzy or Cdh1/Fizzy-
related/Fzr. This destruction is strictly ordered to ensure
that cell cycle events are executed in a timely fashion
[1-5]. Whereas APC/C-Cdc20 is activated at metaphase-
anaphase transition, APC/C-Cdh1 is activated after
APC/C-Cdc20 activation. In the budding yeast Sacchar-
omyces cerevisiae, APC/C-Cdh1 is activated from telo-
phase to late G1 phase [6,7]. The switch from APC/C-
Cdc20 to APC/C-Cdh1 is regulated by multiple

mechanisms [5,8-10]: Cyclin B-Cdk1 (cyclin-dependent
kinase) inhibits Cdh1 activation in metaphase, but cyclin
B degradation mediated by APC/C in late M phase
reduces cyclin B-Cdk1 activity, leading to Cdh1 activa-
tion. In addition, APC/C-Cdh1 mediates Cdc20 degrada-
tion, thereby promoting switching from APC/C-Cdc20
to APC/C-Cdh1.
The spindle assembly checkpoint (SAC) ensures faith-

ful chromosome segregation during cell division [11,12].
In the presence of insufficient kinetochore-microtubule
attachments, the SAC inhibits anaphase onset by the
inhibition of APC/C-Cdc20. The SAC recruits check-
point proteins, including Mad1, Mad2, Bub1, BubR1
(Mad3 in yeast), Bub3 and Mps1, to unattached kineto-
chores. As a result, Mad2, BubR1 and Bub3 bind to and
suppress APC/C-Cdc20 and form the mitotic checkpoint
complex (MCC) [13]. Once all chromosomes have
achieved proper kinetochore-microtubule attachment,
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checkpoint signaling ceases, which is called SAC deacti-
vation or inactivation, and Mad2/BubR1/Bub3 are
released from APC/C-Cdc20. It allows active APC/C-
Cdc20 to drive cells into anaphase by inducing the
degradation of securin and cyclin B. The degradation of
securin permits sister-chromatid separation, and the
destruction of cyclin B reduces Cdk1 activity. In contrast
to the molecular mechanisms of the SAC activation,
those of SAC deactivation are poorly understood [14,15].
Microtubule targeted drugs are of clinical importance

in the successful treatment of a variety of human can-
cers because they activate the SAC and induce mitotic
arrest that leads to apoptotic cell death [16]. However,
in the continued presence of conditions that normally
keep the SAC active, some cells escape from mitosis,
resulting in tetraploid cells [16,17]. This phenomenon is
termed mitotic slippage or adaptation. This process is
largely responsible for the failure to efficiently block
tumor progression. Mitotic slippage depends on pro-
gressive degradation of cyclin B, while the SAC is active,
indicating that mitotic slippage occurs through the over-
riding of activated SAC signaling [18,19]. Mitotic exit
occurs once cyclin B-Cdk1 activity has decreased below
a critical threshold required to maintain a mitotic state
[18]. In addition to cyclin B, other mitotic APC/C sub-
strates, including securin, are also degraded during
mitotic slippage, and a double knockdown of Cdc20 and
Cdh1 prevents the degradation of APC/C substrates
during mitotic slippage [20]. These findings indicate
that APC/C is critical for mitotic slippage. However,
which protein does mitotic slippage require, Cdc20 or
Cdh1? Furthermore, how can APC/C be activated,
although the SAC is active? The degradation of Cyclin
A and NIMA-related kinase 2A (Nek2A) in early mitosis
is dependent on APC/C-Cdc20, and this process is not
inhibited by the SAC [21]. While the SAC-dependent
substrate cyclin B requires Cdc20 for recruitment to
APC/C, Nek2A can bind the APC/C in the absence of
Cdc20 [22]. Thus, the SAC suppresses the degradation
of most, but not all, substrates of APC/C-Cdc20. How-
ever, degradation of cyclin A and Nek2A does not trig-
ger metaphase-anaphase transition and mitotic slippage.
It is unclear how mitotic exit (telophase onset) can be
initiated in metaphase-arrested cells during mitotic slip-
page; less attention has been paid to how anaphase is
executed during mitotic slippage.
In budding yeast, mitotic slippage-like phenomena

have been reported, but they are relatively ill-defined, as
compared with mammalian cells, because the SAC sta-
tus is obscure. It is important to determine the SAC sta-
tus during mitotic slippage (and slippage-like
phenomena), in order to distinguish mitotic slippage
that overrides the activated SAC from events caused by
SAC deactivation. Mitotic exit accompanied by securin

degradation, sister-chromatid separation and nuclear
division was found after treatment of the wild-type yeast
cells with the microtubule depolymerizer benomyl but
not with nocodazole [23]. It is unknown whether these
phenomena found in the presence of benomyl are
indeed mitotic slippage, because the SAC status has not
been characterized. Interestingly, mitotic slippage (or
slippage-like phenomena) is prominently observed in
mutant cells deficient in the budding uninhibited by
benzimidazole (BUB) 2 gene in the presence of nocoda-
zole. Among BUB proteins, whereas Bub1 and Bub3 are
components of the SAC, Bub2 is an inhibitor of the
mitotic exit network (MEN) that promotes anaphase-tel-
ophase transition [8-10,24,25]. Although bub2Δ cells
exhibit an intact SAC, they fail to arrest in metaphase
and exit from mitosis in the presence of nocodazole,
leading to cell death [24,26-28]. In addition, bub2Δ cells
cannot effectively arrest at metaphase when the SAC is
activated by MAD2 overexpression [23].
Nocodazole-treated bub2Δ cells exhibit securin degra-

dation, sister-chromatid separation (indexes of anaphase
progression) and rebudding (an index of telophase pro-
gression and mitotic exit) [24,26,27]. Thus, anaphase
and telophase progression occurs in nocodazole-treated
bub2Δ cells. A mutation in the MEN factor Tem1 sup-
presses bub2Δ-induced sister-chromatid segregation
[28]. It suggests that precocious activation of the MEN
causes mitotic slippage, but the molecular mechanism
responsible is largely unknown. Although securin degra-
dation and sister-chromatid separation are normally
mediated by APC/C-Cdc20 at anaphase onset, these
events found in nocodazole-treated bub2Δ cells are not
repressed by a cdc20-3 mutation at a restrictive tem-
perature [29]. These findings indicate that anaphase pro-
gression in nocodazole-treated bub2Δ cells occurs
independently of APC/C-Cdc20. On the other hand, sis-
ter-chromatid separation in nocodazole-bub2Δ cells is
suppressed by a lack of the APC/C core subunit Cdc26
[27], suggesting that APC/C itself is required for bub2Δ-
mediated anaphase progression. Thus, the bub2Δ stain
might be a useful model for mitotic slippage. We show
herein that nocodazole-treated bub2Δ cells override the
active SAC-mediated metaphase arrest and cause
securin degradation, sister-chromatid separation and
mitotic exit and that APC/C-Cdh1 is critical for mitotic
slippage.

Results
Precocious activation of the MEN induces mitotic slippage
We hypothesized that mitotic slippage in bub2Δ cells is
caused by activation of the mitotic exit system in meta-
phase-arrested cells. To describe anaphase and telophase
progression during mitotic slippage in bub2Δ cells, we
followed sister-chromatid separation (an index of
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Figure 1 Precocious activation of the MEN induces mitotic slippage. (A-E) Exponentially growing cells of strains SCU396 (CEN-GFP) and
SCU397 (bub2Δ CEN-GFP) harboring plasmids pSCU896 (pGAL1-BFA1) or pSCU134 (empty vector) were arrested in G1 phase by a-factor
treatment (10 μg/ml) for 3 h and then released from a-factor into galactose-containing SGalR medium with nocodazole (15 μg/ml) (time 0).
BFA1 was overexpressed under the control of the GAL1 promoter. Green fluorescent protein (GPF)-marked centromeres of chromosome IV were
monitored for sister-chromatid separation (B) and chromosome missegregation (E). Bulk chromosome segregation (nuclear division), by means of
staining with 4’,6-diamidino-2-phenylindole (DAPI), (C) and rebudding (D) were also monitored. Representative cells at the 6 h time point are
shown in (A).
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anaphase onset) using the lacO/lacI system [26] and
new bud formation (rebudding; an index of telophase
progression and mitotic exit). Cells were released from
a-factor (G1 arrest) into a nocodazole-containing med-
ium. The bub2Δ cells gradually overrode metaphase
arrest and showed sister-chromatid separation and
rebudding (Figures 1A, B and 1D), as described pre-
viously [24,26]. We observed frequent chromosome mis-
segregation in the bub2Δ cells (Figures 1A, E). When
the SAC is deactivated after establishment of proper
kinetochore-microtubule attachment, chromosomes
could be accurately segregated. In contrast, chromosome
missegregation might frequently occur in cells during
mitotic slippage, because under these conditions ana-
phase progression occurs even when there are impro-
per/insufficient kinetochore-microtubule attachments.
Chromosome missegregation observed here supports the
occurrence of mitotic slippage in nocodazole-treated
bub2Δ cells. In contrast, a smaller portion of wild-type
cells showed sister-chromatid separation and rebudding
under the same conditions. Thus, Bub2 is critical for the
prevention of mitotic slippage.
Given the role of Bub2, it is most likely that preco-

cious MEN activation occurs in bub2Δ cells, leading to
mitotic slippage. To assess this idea, we examined
whether overexpression of the MEN inhibitor Bfa1 can-
cels mitotic slippage in bub2Δ cells. This was indeed the
case: sister-chromatid separation and rebudding was
completely repressed by BFA1 overexpression (Figures
1A-C, bub2Δ GAL-BFA1). This demonstrated that MEN
activation causes anaphase and telophase onset during
mitotic slippage. It was also reported that a mutation in
the MEN factor Tem1 suppresses bub2Δ-induced sister-
chromatid segregation [28].
Because nuclear division (an index of anaphase pro-

gression) is dependent on spindle microtubules, it is
inhibited when microtubules are completely abrogated.
However, nuclear division in the bub2Δ cells treated
with nocodazole (LKT Laboratories, Lot No. QJ1275)
was identified, although no detectable microtubules
were found in the indirect immunoflorescence assay
(data not shown). This finding suggested that there were
imperceptible microtubules causing nuclear division.
However, it was noteworthy that the SAC was still
active under these conditions (see below). These find-
ings indicated that nocodazole continues to activate the
SAC sufficiently and that the phenomena found in
bub2Δ cells here are caused by mitotic slippage but not
SAC deactivation/inactivation.
We also examined mitotic slippage of bub2Δ cells

when the SAC gene MAD2 was overexpressed. MAD2
overexpression causes SAC activation-mediated meta-
phase arrest, but during a long-term treatment cells
override metaphase arrest and cause cell proliferation,

although profiles of sister-chromatid separation and
nuclear division, chromosome missegregation during
mitotic slippage were not described [23]. When MAD2
was overexpressed for 6 h, rebudding (mitotic exit) was
frequently found in bub2Δ cells, as compared with wild-
type cells (Additional file 1), which was consistent with
the finding that cell proliferation was promoted by the
bub2Δ mutation [23]. Furthermore, it was found that
sister-chromosome segregation and nuclear division
were also prominent in bub2Δ cells (Additional file 1).
Thus, both nocodazole treatment and MAD2 overex-
pression similarly caused mitotic slippage in bub2Δ
cells. In contrast, chromosome missegregation in
MAD2-overexpressing bub2Δ cells was not detectable
(data not shown), which was probably because in this
case microtubules were intact and a proper kinetochore-
microtubule attachment was established.

APC/C-Cdh1 is critical for chromosome separation during
mitotic slippage
Sister-chromatid separation is triggered by APC/C-
Cdc20 at normal anaphase onset, but APC/C-Cdc20 is
suppressed by the SAC in nocodazole-treated cells. This
suggests that APC/C-Cdc20 is not involved in mitotic
slippage. In fact, it was reported that sister-chromatid
separation in nocodazole-treated bub2Δ cells is not sup-
pressed by a temperature sensitive cdc20-3 mutation
[29]. We again found that Cdc20 depletion did not sup-
press sister-chromatid separation in the nocodazole-
treated bub2Δ cells (Figure 2A, B). Rebudding was also
not suppressed by Cdc20 depletion. This finding
demonstrated that Cdc20 is not required for mitotic
slippage. Consistently, it was reported that rebudding of
nocodazole-treated bub2Δ cells was not suppressed by a
temperature sensitive cdc20-1 mutation [30].
We suspected that precocious MEN activation in

nocodazole-treated bub2Δ cells causes activation of
APC/C-Cdh1, leading to mitotic slippage. Indeed, a lack
of Cdh1 markedly repressed sister-chromatid separation
and nuclear division in nocodazole-treated bub2Δ cells
(Figure 2A, B). These observations clearly indicated that
APC/C-Cdh1, but not APC/C-Cdc20, is responsible for
MEN-mediated anaphase progression. In contrast,
rebudding (mitotic exit) was not suppressed by CDH1
deletion, probably because the CDK inhibitor Sic1
induced by the MEN also contributes to the repression
of CDK activity and is sufficient for mitotic exit in
cdh1Δ cells, as in normal mitosis.

APC/C-Cdh1-mediated securin degradation is required for
sister-chromatid separation during mitotic slippage
Sister-chromatid separation requires securin degrada-
tion. We examined securin degradation in nocodazole-
treated bub2Δ cells. The yeast securin Pds1 is
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Figure 2 APC/C-Cdh1 is critical for sister-chromatid separation during mitotic slippage. (A, B) Cells of strains SCU399 (bub2Δ CEN-GFP),
SCU410 (bub2Δ CEN-GFP MET3-CDC20) and SCU1336 (bub2Δ CEN-GFP cdh1Δ) were released from a-factor into the nocodazole-containing SGalR
medium (time 0), as described in Figure 1. Representative cells at the 6 h time point are shown. Expression of MET3 promoter-driven CDC20 in
strain SCU410 was shut off by the addition of methionine. The data for bub2Δ cells are taken from Figure 1, for comparison.
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phosphorylated by CDK, and it was often detected as
two bands in western blotting analysis [31,32]. Securin
degradation was repressed in the presence of nocodazole
by the SAC in wild-type cells, but it occurred in bub2Δ
cells [27] (Figure 3A, WT and bub2Δ). Because sister-
chromatid separation in nocodazole-treated bub2Δ cells
was APC/C-Cdh1 dependent (Figure 2), it would be
expected that APC/C-Cdh1 is required for securin
degradation during mitotic slippage in nocodazole-trea-
ted bub2Δ cells. In the normal cell cycle, it was sug-
gested that APC/C-Cdh1 mediates securin degradation
after telophase onset (see “Discussion”). Indeed, securin
degradation was largely suppressed by the loss of Cdh1
in bub2Δ cells (Figure 3A): bub2Δ cdh1Δ cells reprodu-
cibly had more securin at G1 phase (0 time point). This
may result from the repression of securin degradation in
the previous mitosis. Thereafter, securin levels were
approximately equal between bub2Δ and bub2 cdh1Δ
cells 1 hour after G1 release, and then securin degrada-
tion was obvious only in bub2Δ cells. Thus, APC/C-
Cdh1 triggered securin degradation during mitotic
slippage.
Next, we examined whether this securin degradation

during mitotic slippage is required for sister-chromatid
separation. APC/C-Cdh1 targets securin through D- and
KEN boxes [33,34]. To test this, we ectopically
expressed a non-degradable securin mutant devoid of
both D- and KEN boxes (securin-dkb) [34]. Securin-dkb
strongly repressed sister-chromatid separation (Figures
3B, C). In contrast, as expected, expression of a securin
mutant lacking only the D-box (securin-db) repressed
sister-chromatid separation less effectively. These find-
ings demonstrated that APC/C-Cdh1-mediated securin
degradation is a prerequisite for sister-chromatid separa-
tion during mitotic slippage in nocodazole-treated
bub2Δ cells.

Separase executes sister-chromatid separation and
nucleolar segregation during mitotic slippage
After APC/C-Cdc20-dependent securin degradation at
normal anaphase onset, the liberated separase cleaves
the subunit of cohesin Scc1, allowing sister-chromatid
separation [35]. On the other hand, cohesin removal
from chromosomes is also performed via another route;
in higher eukaryotes, cohesins are largely dissociated
from the chromosome arms in prophase in a separase-
independent manner (called the prophase pathway)
[36,37]. The prophase pathway has not yet been
described in yeast, but recent reports suggested the
occurrence of separase-independent cohesin removal
and chromosome separation [38,39]. We examined
whether separase-mediated Scc1 cleavage is required for
sister-chromatid separation during mitotic slippage with
the use of Scc1-RRDD, a non-cleavable mutant version

of Scc1 [40]. Ectopic expression of Scc1-RRDD drasti-
cally suppressed sister-chromatid separation (Figures
4A, B). This clearly demonstrated that sister-chromatid
separation requires separase-mediated Scc1 cleavage
during mitotic slippage. Overall, APC/C-Cdh1 triggers
securin degradation, separase liberation and then cohe-
sin cleavage, causing sister-chromatid separation during
mitotic slippage in nocodazole-treated bub2Δ cells.
In normal early anaphase, the liberated separase also

causes nucleolar segregation in a manner independent
of its protease activity [41-43]. The nucleolar segregation
into mother and daughter cells was observed, together
with nuclear division during mitotic slippage in the
bub2Δ cells (Figure 4C). This indicates that protease-
independent action of separase is also promoted during
mitotic slippage.

The SAC is active during mitotic slippage
In mammalian cells, mitotic slippage occurs with SAC
being still active and cells override the SAC-mediated
metaphase arrest (see “Introduction”). To test whether
the SAC is active in the present case, we examined kine-
tochore localization of Mad2, an index of SAC activa-
tion (Figure 5A). We observed GFP-tagged Mad2 signals
on the kinetochores, which were marked by RFP (red
fluorescent protein)-tagged Mtw1 (a kinetochore pro-
tein). We observed colocalization of Mad2 and Mtw1
signals in nocodazole-treated bub2Δ cells, as also
observed in nocodazole-treated wild-type cells (Figures
5A, B), indicating that the SAC is still active in the
bub2Δ cells, like in the wild-type cells. This demon-
strates that SAC deactivation does not cause sister-chro-
matid separation, securin degradation and rebudding in
the nocodazole-treated bub2Δ cells. Cell images were
captured with single Z-axis sections using a microscope.
Because the size of the kinetochore is considerably smal-
ler than the cell, 100% of the signals of Mad2-GFP on
the kinetochores were not detectable even if all Mad2
signals were localized on the kinetochores in all cells. It
was noteworthy that both mother and daughter cells
had one Mad2 dot signal on the kinetochore each in
some bub2Δ cells (Figures 5A, B). Because kinetochore
segregation to both mother and daughter cells indicates
anaphase progression in these cells, these findings
demonstrated that anaphase progression occurred with
an active SAC in nocodazole-treated bub2Δ cells and
that the cells overrides metaphase arrest by the activated
SAC. Thus, precocious APC/C-Cdh1 activation over-
rides SAC-mediated metaphase arrest and causes mitotic
slippage.

Ectopic activation of Cdh1 causes mitotic slippage
To test the idea that precocious activation of APC/C-
Cdh1 causes mitotic slippage, we examined whether
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ectopic activation of Cdh1 similarly causes mitotic slip-
page. Cells were released from a-factor (G1 phase) to a
medium containing nocodazole and galactose to overex-
press CDH1. CDH1 overexpression brought about no
securin accumulation, sister-chromatid separation or
nuclear division with chromosome missegregation (Fig-
ures 6A-C). Rebudding was lowered by CDH1 overex-
pression under these conditions for an unknown reason
(Figure 6B), whereas CDH1 overexpression in meta-
phase-arrested cells treated with nocodazole caused
securin degradation and rebudding (Figure 6D and data

not shown). Thus, ectopic activation of APC/C-Cdh1
caused mitotic slippage.
Cdc14 phosphatase, which antagonizes CDK, promotes

APC/C-Cdh1 activation and mitotic exit in telophase
[5,9,41]. CDC14 overexpression from G1 phase induced
securin degradation (Figure 6C) but inhibited G1/S pro-
gression [44] (data not shown). Hence, we overexpressed
CDC14 in metaphase-arrested cells treated with nocoda-
zole. CDC14 overexpression promoted securin degrada-
tion and sister-chromatid separation (Figures 6D-F).
However, both of these events were repressed in cdh1Δ
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Figure 5 The SAC is still active during mitotic slippage. (A, B) Cells of strains SCU1337 (MAD2-GFP) and SCU1338 (bub2Δ MAD2-GFP)
harboring the plasmid pSCU1701 (pMTW1-RFP) were released from a-factor into the nocodazole-containing medium (time 0), as described in
Figure 1. Kinetochore localization of GFP-tagged Mad2 was monitored and counted after 6 h. White arrows indicate colocalized Mad2-GFP and
Mtw1-RFP signals.
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cells (Figure 6E, F). These findings indicated that ectopic
activation of Cdc14 causes mitotic slippage via APC/C-
Cdh1. Consistent with the previous report that CDC14
overexpression promotes mitotic exit but represses bud-
ding in the next S phase, because of the counteraction of
Cdc14 against CDK-mediated phosphorylation [44], no
promotion of rebudding in the next S phase by CDC14
overexpression was observed (Figure 6F). Overall, these
findings in Cdh1- and Cdc14-overexpressing cells

supported the notion that precocious activation of APC/
C-Cdh1 in pre-anaphase triggers mitotic slippage.

Discussion
Precocious activation of APC/C-Cdh1 in metaphase causes
mitotic slippage
While APC/C-Cdc20 is activated at metaphase-anaphase
transition, APC/C-Cdh1 is activated at anaphase-telo-
phase transition [6,7] (Figure 7A). The switch from

C
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Figure 7 A model for APC/C-Cdh1-mediated anaphase progression. (A) APC/C-Cdc20-mediated anaphase progression in normal cell cycle. (B)
APC/C-Cdh1-mediated anaphase and telophase progression during mitotic slippage. When proper kinetochore-microtubule attachments are not
established, the SAC inhibits APC/C-Cdc20-mediated anaphase onset. However, loss (bub2Δ) or impairment of Bub2 function causes APC/C-Cdh1
triggered anaphase progression and telophase onset (mitotic exit). For details, see the text. (C) Schematic representation of securin proteins in S.
cerevisiae (Pds1), Schizosaccharomyces pombe (Cut2), Drosophila (PIM) and Human (hPTTG). Blue and red lines indicate D- and KEN boxes.
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APC/C-Cdc20 to APC/C-Cdh1 is regulated by multiple
mechanisms [5,8-10]. This sequential activation is
thought to be the heart of accurate mitosis, but this
notion has not yet been fully tested. This study showed
that precocious activation of APC/C-Cdh1 in metaphase
(pre-anaphase) caused mitotic slippage in nocodazole-
treated cells and that APC/C-Cdh1, instead of APC/C-
Cdc20, could trigger anaphase progression, in addition
to telophase progression (Figure 7B).
APC/C-Cdh1-mediated anaphase progression during

mitotic slippage had two prominent features. First,
APC/C-Cdh1-mediated anaphase progression brought
about chromosome missegregation, because APC/C-
Cdh1 is not inhibited by the SAC in the presence of
inappropriate kinetochore-microtubule attachments;
therefore, APC/C-Cdh1-mediated securin degradation
results in chromosome missegregation. This demon-
strated that an inhibitory system not only of APC/C-
Cdc20 but also of APC/C-Cdh1 is critical for accurate
chromosome segregation in the presence of insufficient
kinetochore-microtubule attachments.
Second, APC/C-Cdh1 simultaneously starts anaphase

and telophase from metaphase. APC/C-Cdc20 recognizes
the D-box of a relatively limited umber of targets (the
important targets are only cyclin Clb5 and securin Pds1 in
budding yeast) [45], whereas APC/C-Cdh1 recognizes var-
ious motifs on numerous targets (A-, O-, CRY and GxEN
boxes, in addition to D- and KEN boxes) [2,46-48].
Namely, APC/C-Cdh1 could target substrates for APC/C-
Cdc20, which allowed simultaneous onsets of anaphase
and telophase. APC/C-Cdh1 targets securin Pds1 in a
manner dependent on D- and KEN boxes in vitro [33,34],
and ectopically expressed Pds1 in G1 phase was degraded
in a manner dependent on APC/C-Cdh1 [49]. These find-
ings suggested that APC/C-Cdh1 mediates securin degra-
dation from telophase to G1 phase in vivo. If APC/C-
Cdh1 becomes activated abnormally in metaphase, it can
target securin, leading to sister-chromatid separation (Fig-
ure 7B). This study clarifies these abnormal aspects of pre-
cocious APC/C-Cdh1 activation in metaphase cells and
emphasizes that sequential activation of APC/C-Cdc20-to-
APC/C-Cdh1 is critical for mitosis.
Deregulation of APC/C-Cdh1 in other cell phases

brings about different outputs. CDH1 overexpression in
asynchronized cells leads to elongated buds, G2 phase
arrest, and 4C DNA content in some cells [6,7,50]. Preco-
cious activation of APC/C-Cdh1 in G2 phase targets pro-
teins that are required for separation of the spindle pole
body (SPB, yeast centrosome), the BimC family kinesins
Cin8/Eg5 and Kip1 and the interpolar microtubule mid-
zone protein Ase1 [51,52]. Thus, deregulation of Cdh1
activity compromises genome transmission in various
ways and timely activation and inactivation of APC/C-
Cdh1 are pivotal for accurate genome transmission.

APC/C-Cdh1-mediated mitotic slippage in other
organisms
In fission yeast, the septation initiation network (SIN), a
signaling pathway homologous to the MEN, coordinates
mitosis and cytokinesis [8,25,53,54]. Cdc16 (Bub2 ortho-
log) acts as a negative factor of the SIN, and cdc16
mutant cells undergo cytokinesis in the presence of the
microtubule destabilizer thiabendazole [55-57]. This
suggests that SIN-mediated APC/C-Cdh1/Ste9 activation
causes mitotic slippage. In addition, the fission yeast
securin Cut2 also has D- and KEN boxes (Figure 7C).
We postulate that APC/C-Cdh1/Ste9-mediated securin
degradation and sister-chromatid separation is promoted
during mitotic slippage in fission yeast.
In mammalian mitosis, APC/C-Cdc20 and APC/C-

Cdh1 are sequentially activated [3,5,58]. Mitotic slippage
depends on progressive degradation of cyclin B with the
SAC active [18,19]. This suggests that APC/C-Cdh1, but
not APC/C-Cdc20, is also involved in mitotic slippage
in mammalian cells. Cdc20 and Cdh1 target securin in a
manner dependent on D/KEN-boxes [59,60] (see Figure
7C). This suggests that precocious activation of APC/C-
Cdh1 similarly causes securin degradation and sister-
chromatid separation during mitotic slippage in mam-
malian cells. In fact, deregulation of Cdh1 in pre-ana-
phase results in premature securin degradation and
sister-chromatid separation [59,61]. The present study
predicts that for prevention of mitotic slippage, conco-
mitant inhibition of APC/C-Cdh1 may be effective for
tumor therapy with mitotic spindle poisons in humans.

Conclusions
The sequential activation of APC/C-Cdc20-to-APC/C-
Cdh1 during mitosis is critical for accurate mitosis. Pre-
cocious activation of APC/C-Cdh1 in metaphase (pre-
anaphase) causes mitotic slippage in microtubule poi-
son-treated cells. For prevention of mitotic slippage,
concomitant inhibition of APC/C-Cdh1 may be effective
for tumor therapy with mitotic spindle poisons in
human.

Methods
Strains, plasmids, media and materials
S. cerevisiae strains and plasmids used are listed in
Tables 1 and 2. Glucose-containing YPAD (YPD con-
taining 0.01% adenine) and synthetic minimal medium
(SD) complemented with the appropriate nutrients for
plasmid maintenance were prepared using standard
methods. SGalR and SRGly were identical to SD except
that they contained 1% galactose plus 1% raffinose, and
2% galactose plus 3% glycerol instead of 2% glucose,
respectively. Nocodazole and a-factor were purchased
from LKT Laboratories (St. Paul, MN, USA) and Gene-
net (Fukuoka, Japan), respectively.
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Microscope observations
Except for Mad2-GFP-expressing cells, cells expressing
GFP-tagged proteins were fixed with 70% ethanol for 30
sec. After washing with distilled water, cells were stained
with 4’,6-diamidino-2-phenylindole (DAPI) at 1 μg/ml for
15 min. For detection of weak Mad2-GFP signals, cells
were not fixed with ethanol. Washed cells were viewed

using an Olympus IX71-23FL/S microscope (100× objec-
tive) and a cooled charge-couple device (CCD) camera
(ORCA-ER-1, Hamamatsu Photonics) connected to a Sca-
nalytics Image Processor LuminaVision (Mitani Corp.,
Tokyo, Japan). For Figures 4C and 5A and Additional file
1A, a Carl Zeiss Axio Imager M1 microscope with a cooled
CCD camera (Carl Zeiss AxioCam MRm) was used.

Table 1 Yeast strains used in this study

Name (Alias) Description (Source)

SCU15 (W303a) Mata ura3 his3 leu2 trp1 ade2 can1 (lab stock)

SCU151 (bub2Δ) SCU893 bub2::hphMX4 (this study)

SCU396 (CEN-GFP) SCU893 his3::GFP12-LacI12-NLS::HIS3 trp1::LacOx256-TRP1 (this study)

SCU397 (bub2Δ CEN-GFP) SCU396 bub2::loxP (this study)

SCU398 (CEN-GFP) SCU893 ura3::tetO2x112::URA3 leu2::tetR-GFP-NLS::LEU2 (this study)

SCU399 (bub2Δ CEN-GFP) SCU398 bub2::hphMX (this study)

SCU404 (bub2Δ GAL-SCC1-RRDD CEN-GFP) SCU397 leu2::GAL1-SCC1-R180D/R268D-HA3::LEU2 (this study)

SCU408 (bub2Δ PDS1-HA3) SCU151 PDS1-HA3::URA3 (this study)

SCU410 (bub2Δ MET3-CDC20 CEN-GFP) SCU399 MET3-CDC20::TRP1 (this study)

SCU893 (bar1Δ) SCU15 bar1::hisG (U. Surana)

SCU1226 (cdh1Δ CEN-GFP) SCU15 ura3::tetO::URA3 leu2::tetR::LEU2 cdh1::HIS3 [63]

SCU1228 (cdh1Δ) SCU15 cdh1::kanR [63]

SCU1336 (bub2Δ cdh1Δ CEN-GFP) SCU1226 bub2::kanMX (this study)

SCU1337 (MAD2-GFP) SCU893 mad2::kanMX [pMAD2-GFP] (this study)

SCU1338 (bub2Δ MAD2-GFP) SCU151 mad2::kanMX [pMAD2-GFP] (this study)

SCU1700 (cdh1Δ CEN-GFP) SCU1228 trp1::LacOx256:TRP1 his3::HIS3p-GFP13-LacI12NLS::HIS3 (this study)

SCU2755 (PDS1-HA3) SCU893 pds1::PDS1-HA3::URA3 (this study)

SCU2834 (bub2Δ cdh1Δ PDS1-HA3) SCU1336 ura3 pds1::PDS1-HA3::URA3 (this study)

Table 2 Plasmids used in this study

Name (Alias) Description (Source)

pSCU134 (p416GAL1) GAL1 URA3 CEN [64]

pSCU145 (pRS414) TRP1 CEN [65]

pSCU563 (pLacOx256-LEU2) lacOx256 LEU2 integrative [26]

pSCU564 (pGFP12-LacI12-NLS) CUP1pro-GFP12-LacI12-NLS HIS3 integrative [26]

pSCU683 (ptetR-GFP) NLS-tetR-GFP LEU2 integrative [66]

pSCU710 (ptetO2x112) tetO2x112 URA3 integrative [66]

pSCU740 (pNOP1-GFP) NOP1-HA3GFP URA3 CEN (this study)

pSCU784 (pPDS1-HA3) PDS1-HA3 URA3 integrative [31]

pSCU802 (pGAL1-CDC14) GAL-CDC14-His6 URA3 CEN [67]

pSCU816 (pGAL-SCC1-RRDD) GAL-SCC1-R180D/R268D-HA3 LEU2 integrative [40]

pSCU878 (pGAL-CDH1) GAL-CDH1-GFP TRP1 CEN [68]

pSCU896 (pGAL1-BFA1) GAL1-BFA1 URA3 CEN [69]

pSCU973 (pMAD2-GFP) MAD2-GFP URA3 CEN [70]

pSCU985 (YIp22-MET3-CDC20) MET3-CDC20 TRP1 integrative (F. Uhlmann)

pSCU1212 (p416GAL1-pds1-db) GAL1-PDS1 with mutated D-box URA3 CEN (this study)

pSCU1214 (p416GAL1-pds1-dkb) GAL1-PDS1 with mutated D/KEN-box URA3 CEN (this study)

pSCU1550 (pGAL1-MAD2) GAL1-MAD2-His6HAZZ 2 μ URA3 [71]

pSCU1575 (pGAL1-CDH1) GAL1-CDH1-TAP 2 μ TRP1 (this study)

pSCU1576 (pGAL1-CDC14) GAL1-CDC14-His6HAZZ 2 μ TRP1 (this study)

pSCU1701 (pMTW1-RFP) MTW1-DsRed.T4 CEN LEU2 (this study)
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Western blotting analysis
Western blotting was performed as described previously
[62] using an anti-hemagglutinin (HA) antibody (16B12,
BAbCo), anti-cyclin dependent kinase (CDK) antibody
(Santa Cruz), and anti-glucose-6-phosphate dehydrogen-
ase (G6PDH) antibody (Sigma). Femtogrow chemilumi-
nescent substrate (Michigan Diagnostics) for horseradish
peroxidase (HRP) and Can Get Signals (Toyobo, Japan)
as an immunoreaction enhancer solution were used.
Chemiluminescent signals were detected using an
LAS3000 mini (Fuji).

Additional material

Additional file 1: Mitotic slippage of MAD2-overexpressing bub2Δ
cells. (A, B) Cells of strains SCU396 (CEN-GFP) and SCU397 (bub2Δ CEN-
GFP) harboring plasmid pSCU1550 (pGAL-MAD2) were released from a-
factor into the nocodazole-containing medium (time 0), as described in
Figure 1. Kinetochore localization of Mad2-GFP was monitored and
counted after 6 h. White arrows indicate colocalized Mad2-GFP and
Mtw1-RFP signals.
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