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Abstract 

The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with 
Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the forma‑
tion of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the 
cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiqui‑
tination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the 
regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 
system to overcome antiviral responses.
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Identification and regulation of cullin 5
Cullin 5 (Cul5) was originally identified as a vasopres-
sin-activated calcium-mobilizing (VACM-1) protein, an 
arginine vasopressin (AVP) receptor [1]. AVP is a nona-
peptide that regulates body fluid and blood pressure 
homeostasis. VACM-1 is recognized as Cul5 because of 
its homology to the Caenorhabditis elegans gene Cul5 [2, 
3]. Cul5 is expressed in many cells and organs, including 
endothelial cells, brain, kidney collecting tubule cells, and 
vascular endothelial cells [2, 4–6, 7]. Cul5 inhibits cyclic 
AMP production, and this effect is reversed by stauro-
sporin, a protein kinase A (PKA) inhibitor, or by mutating 
S730A, the PKA-dependent phosphorylation site in the 
Cul5 sequence in COS-1 cells [8]. The inhibitory effect of 
Cul5 on AVP-stimulated cAMP production is enhanced 
by a protein kinase C inhibitor [8]. CUL-5 expression is 
downregulated in 82  % (41/50) of breast tumors com-
pared with matched normal tissues [9]. Overexpression 
of Cul5 in T47D breast cancer cells decreases cell growth 
and mitogen activated protein kinase (MAPK) phospho-
rylation [10], and Cul5 overexpression downregulates 

early growth response 1 (EGR-1) protein expression and 
upregulates Fas-L mRNA expression [10]. The regula-
tion of both MAPK and EGR-1 pathways by 17β-estradiol 
led to the examination of estrogen-dependent T47D 
cell growth, which showed that Cul5 inhibits basal and 
17β-estradiol-dependent cell growth and MAPK phos-
phorylation [11].

Resveratrol (trans-3,5,4′-trihydroxystilbene), which 
inhibits tumor initiation and promotion, is a natural 
component of the human diet, and its wide range of 
biological activities has been demonstrated in  vivo and 
in vitro [12–15]. The antiproliferative effect of resveratrol 
is significantly enhanced by Cul5 overexpression in T47D 
cells [16].

The expression of Cul5 is regulated by several stimuli 
and pathways (Fig.  1). Resveratrol upregulates Cul5 
expression and decreases T47D cell growth, suggesting 
that the antiproliferative effect of resveratrol is medi-
ated by Cul5 [16]. Cul5 is a flexible scaffold protein with a 
preferred distribution of conformational states [17], and 
NEDD8 modification (neddylation) alters the conforma-
tion of Cul5 and activates it [18]. Cul5(S730A) accelerates 
cellular proliferation and induces angiogenic growth in 
rat adrenal medullary endothelial cells (RAMECs) [19]. 
Cul5 neddylation is increased by the S730A mutation, and 
activation of PKA by forskolin suppresses the neddylation 
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of Cul5 [20]. Furthermore, PKC-induced RAMEC prolif-
eration is enhanced by Cul5(S730A) [20]. Cul5(S730A) 
expression in RAMECs increases the levels of phospho-
rylated MAPK and the translocation of the transcrip-
tion factor EGR-1, a tumor suppressor, to the nucleus; it 
also causes morphological alterations mediated by actin 
rearrangement [19]. Furthermore, Cul5(S730A) down-
regulates maspin, a putative tumor suppressor [21] that is 
essential for early embryonic development [22], although 
these functions are controversial [23]. These reports sug-
gest that Cul5 plays a role in endothelial cell growth and 
angiogenesis by regulating MAPK phosphorylation, the 
nuclear localization of EGR-1, maspin expression, and 
actin polymerization. Nevertheless, no mutation was 
found at the putative phosphorylation or neddylation 
site of Cul5 in T47D breast cancer cells, U138MG glioma 
cells, ACHN renal cancer cells, and OVCAR-3 ovarian 
cancer cells [24]. C. elegans oocyte septum formation and 
egg production were absent in Cul5- or ring box protein 
2 (Rbx2)-depleted Cul2 homozygotes, whereas control 
Cul2 homozygotes laid approximately 50 eggs [25]. Addi-
tionally, Cul5-depleted Cul2 mutants and Cul2-depleted 
Cul5 mutants show decreased MPK-1 activity, suggesting 
that oocyte maturation from pachytene exit and MPK-1 
activation are redundantly controlled by the Rbx2-Cul5- 
and Rbx1-Cul2-based complexes [25].

C-peptide [26, 27], the product of the cleavage of pro-
insulin, is a peptide hormone that acts through a G pro-
tein-coupled membrane receptor [28–30]. Given that 
C-peptide and vasopressin share similar intracellular 
effects, including the activation of calcium influx and 
endothelial nitric oxide (NO) synthase [31–36], the effect 
of C-peptide on Cul5 was examined [37]. Cul5 expression 
was increased by C-peptide, and the induction was pre-
vented by pertussis toxin, a specific inhibitor of G pro-
teins [37].

Rat Cul5 mRNA is expressed in the brain and its lev-
els increase in the rat cerebral cortex, hypothalamus, 
and kidney in response to 48 h of water deprivation [38, 
39]. Cul5 overexpression in COS-1 cells downregulated 
aquaporin-1 (AQP1), and Cul5 was upregulated in rat 
mesenteric arteries, skeletal muscle, and the heart ven-
tricle in response to 24 h of water deprivation [40]. Cul5 

neddylation was also increased by 24 h of water depriva-
tion, and AQP1 levels were inversely correlated with the 
ratio of Cul5 to neddylated Cul5 [40]. Furthermore, over-
expression of Cul5 downregulated AQP2, and Cul5 was 
decreased in renal collecting ducts in response to water 
deprivation [41]. Cul5 mRNA levels were increased in the 
brainstem and cerebellum, and decreased in the hypo-
thalamus of rats by hemorrhagic shock [42].

Cul5 disappears during the cell cycle S phase; it local-
izes to the cytosol during cell division and to the cell 
membrane at the completion of cytokinesis, suggesting 
that it plays a role in cell division [43]. Cul5 mRNA and 
protein levels are decreased in the rat cerebral cortex 
and hippocampus in response to traumatic brain injury 
(TBI) [44]. Another report showed a 6.5-fold upregula-
tion of Cul5 associated with granulocytic differentiation 
of HL-60 cells [45].

Hepatitis B virus infection downregulates micro-
RNA-145 (miR-145), upregulates Cul5 expression, and 
enhances cell proliferation [46]. miR-7, which upregu-
lates Cul5 expression, is downregulated in hepatocellular 
carcinoma (HCC) tissues compared with adjacent non-
tumor tissue [47]. By contrast, overexpression of miR-7 
prevents colony formation and induces G1/S phase 
arrest, suggesting that miR-7 is a tumor suppressor in 
HCC [47]. miR-19a and -19b (miR-19a/b), which nega-
tively regulate Cul5 expression, are highly expressed 
in human cervical cancer cells [48]. Upregulation of 
miR-19a/b promotes cell growth and invasion, whereas 
overexpression of miR-19a/b-resistant Cul5 without its 
3′-UTR abolishes the effect of miR-19a/b on cell prolif-
eration and invasion [48].

Rbx2 is polyubiquitinated by NEDD4-1, a HECT 
domain-containing E3 ubiquitin ligase, and targeted 
for proteasome-mediated degradation, suggesting that 
NEDD4-1 suppresses Cul5 ubiquitin ligase activity 
[49]. Overexpression of NEDD4-1 increases etoposide-
induced apoptosis, suggesting that Rbx2 has an anti-
apoptotic role [49, 50].

Cul5‑containing ubiquitin ligases
CIS/SOCS family
Suppressor of cytokine signaling (SOCS) proteins 
(SOCS1, SOCS2, SOCS3, SOCS4, SOCS5, SOCS6, and 
SOCS7) and cytokine-inducible Src homology 2 (SH2) 
domain-containing protein (CIS, also known as CISH) 
interact with Cul5 through its “Cul5 box” [51–53]. The 
amino acid sequence LPΦP (Φ represents a hydropho-
bic residue) in the Cul5 box is required for specific inter-
action with Cul5 [51, 53, 54]. Cul5 also interacts with 
Rbx2, enabling SOCS box-containing proteins to form a 
protein complex with Cul5 and Rbx2 (Fig. 2) [51, 53, 54] 
(Table 1). 
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Fig. 1  Regulation of Cul5. Several stimuli or microRNAs regulate the 
expression of Cul5
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All CIS/SOCS family proteins have a central SH2 
domain and a C-terminally located SOCS box, which 
consists of an Elongin C-interacting BC box and a Cul5-
interacting Cul5 box with an approximately 40-amino 
acid motif (Fig.  3) [51–58]. CIS/SOCS family proteins 
bind to janus kinases (JAKs), certain cytokine receptors, 
or signaling molecules to suppress downstream signal-
ing events [52, 56, 59]. A small kinase inhibitory region 
(KIR) of SOCS1 and SOCS3 inhibits JAKs by acting as 
a pseudo-substrate, thereby suppressing further signal 
transduction [52, 56]. By contrast, CIS/SOCS family pro-
teins inhibit signaling by competing with downstream 
proteins for binding to the activated receptors, suppress-
ing signal transduction by inducing the polyubiquitina-
tion and proteasomal degradation of target substrates 
[52, 56]. For example, SOCS1 polyubiquitinates JAK2, 
Vav, IRS1 and IRS2, the GM-CSF receptor βc subunit, 
Cdh1, p65, Mal, and HPV E7 [60–67].

SOCS1 contains an incompletely conserved Cul5 box, 
and no interaction between SOCS1 and Cul5 has been 
detected [51]. Given that SOCS1 polyubiquitinates sev-
eral substrates as described above, it is possible that the 
interaction of SOCS1 with these substrates recruits other 
ubiquitin ligase(s) that actually mediate their polyubiq-
uitination and degradation, or that the bond between 
SOCS1 and the Cul5/Rbx2 complex is unstable [51]. 
SOCS1 and SOCS3 bind relatively weakly to Cul5, with 
affinities 100-fold and 10-fold lower, respectively, than 
those to the rest of the family [68]. This might explain 
why only SOCS1 and SOCS3 suppress signal transduc-
tion through both SOCS box-dependent and -independ-
ent mechanisms [68].

Knockdown of Cul5 accelerates growth factor-inde-
pendent cell growth, migration, membrane dynamics, 
and colony dysmorphogenesis, which are all depend-
ent on the endogenous tyrosine kinase Src [69]. Mecha-
nistically, Cul5 and Src stimulate the degradation of the 
Src substrate p130Cas (Crk-associated substrate) [69]. 

Tyrosine phosphorylation of Cas stimulates the inter-
action between SOCS6 and Cas and the proteasomal 
degradation of Cas [69]. Cas is necessary for the trans-
formation of Cul5 knockdown cells, and Cul5 suppresses 
epithelial cell transformation by regulating several path-
ways, including inhibition of Src–Cas-induced ruffling 
through SOCS6 [69].

Src is a non receptor tyrosine kinase that mediates 
many signaling pathways involving various soluble and 
adhesive signaling molecules and regulates cell prolifera-
tion, survival, differentiation, and migration [70]. Cul5 
downregulates active but not inactive Src, and knock-
down of Cul5 increases protein tyrosine phosphorylation, 
induces morphological transformation, and deregulates 
cell growth [71].

The mammalian cortical plate assembles from the 
inside outwards [72, 73]. This organization requires a 
signaling pathway mediated by an extracellular protein, 
reelin (Reln), and an intracellular molecule, disabled-1 
(Dab1) [74–77]. Reln stimulates the tyrosine phospho-
rylation of Dab1 by the Src family tyrosine kinases (SFKs) 
Fyn and Src [78–82]. Tyrosine-phosphorylated Dab1 is 
degraded in a Cul5 and SOCS protein-dependent man-
ner [83–85]. Functionally, knockdown of Cul5 in migrat-
ing neurons shifts their location to a more superficial 
position, suggesting that Cul5 is crucial for the precise 
location of the termination of neuronal migration [83]. 
Furthermore, Rbx2 knockdown resulted in a shift in neu-
ronal positioning to a more superficial location [86]. Rbx2 
conditional knockout mice show neocortical and cerebel-
lar ectopias dependent on Dab1 [86]. Finally, SOCS7 is a 
Dab1 recognition protein that promotes polyubiquitina-
tion and degradation [86].

Tuberous sclerosis complex (TSC) is associated with 
neurodevelopmental abnormalities resulting from muta-
tions in one of two genes, TSC1 (encoding hamartin) or 
TSC2 (encoding tuberin) [87]. Cul5 is upregulated at the 
mRNA and protein levels by increased mammalian target 
of rapamycin (mTOR) signaling or in the absence of Tsc2, 
providing potential molecular mechanisms underlying 
the neuronal migration deficit induced by the degrada-
tion of Dab1 in TSC pathology [88].

SPRY domain‑containing SOCS box protein (SPSB/SSB) 
complex
The SplA/ryanodine receptor (SPRY)/B30.2 domain has 
a role in protein–protein interactions, although its main 
functions remain poorly understood [89]. The SPRY/
B30.2 domain is a sequence repeat in the dual specificity 
kinase SplA and ryanodine receptors [89].

The four members of the SPSB family (SPSB1–
SPSB4) are characterized by a C-terminal SOCS box 
and a central SPRY/B30.2 domain [89–92]. SPSB1, 2, 
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SOCS box protein E2
Ubiquitin
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Elongin B

Fig. 2  Cul5-containing ubiquitin ligases. Cul5 is a scaffold protein 
that recruits Rbx2, the Elongin B/C complex, and SOCS box proteins. 
SOCS box proteins recognize particular substrates to be polyubiqui‑
tinated
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and 4 polyubiquitinate inducible nitric oxide synthase 
(iNOS/NOS2), targeting it for proteasomal degradation 
[93, 94]. The activity of iNOS is approximately tenfold 
greater than that of NOS1 and NOS3, suggesting that 
iNOS is a high-output NOS compared with NOS1 and 
NOS3 [95]. iNOS is not detectable under normal con-
ditions, whereas it is induced in response to cytokines, 

microbes, or microbial products, resulting in the sus-
tained production of NO [95]. As a result, reactive 
nitrogen intermediates (such as NO, nitrite, and nitrate) 
and the products of the interaction of NO with reactive 
oxygen species (such as peroxynitrite and peroxyni-
trous acid) accumulate and inhibit viruses or bacteria 
[95–97]. SPSB2-deficient macrophages show prolonged 
iNOS and NO production, resulting in the enhanced 
killing of L. major parasites [93]. By contrast, SPSB1 and 
SPSB4 are major ubiquitin ligases for iNOS that prevent 
the overproduction of NO, which could cause cytotox-
icity [94, 98, 99].

The transforming growth factor-β (TGF-β) signaling 
pathway is a crucial signaling pathway that requires tight 
regulation, and dysregulation of this pathway strongly 
correlates with the progression of human cancers [100, 
101]. SPSB1 negatively regulates the TGF-β signaling 
pathway by ubiquitinating and targeting TGF-β type 
II receptor (TβRII) for proteasomal degradation [102]. 
Knockdown of SPSB1 results in the accumulation of 
TβRII and enhanced TGF-β signaling, migration, and 
invasion of tumor cells [102].

Ankyrin repeat and SOCS box (ASB) family
The ASB family is composed of 18 members from ASB1 
to ASB18. Several members interact with Cul5-Rbx2 and 
act as ubiquitin ligase complexes [103]. ASB-Cul5 com-
plexes can oligomerize, and Cul5 can form heterodimeric 
complexes with the Cul4a-DDB1 complex [104].

Although ASB1 is expressed in multiple organs, includ-
ing the hematopoietic compartment, ASB1-deficient 
mice develop normally and exhibit no phenotypes, with 
the exception of diminished spermatogenesis and incom-
plete filling of seminiferous tubules [105].

ASB2 is induced by retinoic acid (RA) in acute promye-
locytic leukemia cells, and exogenous ASB-2 in myeloid 
leukemia cells results in growth inhibition and chroma-
tin condensation, which recapitulate the early steps of 
induced differentiation of acute promyelocytic leukemia 
cells [106]. ASB2 targets the actin-binding proteins fil-
amin A and B for proteasomal degradation [107–110]. 
Knockdown of ASB2 in leukemia cells delays RA-induced 
differentiation, which suggests that ASB2 regulates 
hematopoietic cell differentiation by targeting filamins 
for degradation, thereby modulating actin remodeling 
[107]. ASB2 enhances the adhesion of hematopoietic 
cells to fibronectin, the main ligand of β1 integrins, by 
promoting filamin A degradation [111]. ASB2 heterodi-
merizes with Skp2 and forms a noncanonical Cul1- and 
Cul5-containing dimeric ubiquitin ligase complex that 
promotes the polyubiquitination and degradation of Jak3 
[112, 113]. A list of candidate substrates of ASB2 was 
reported in a recent study [114].

Table 1  Cul5-containing ubiquitin ligases and  the corre‑
sponding substrates

Cul5-type ubiquitin 
ligases

Substrates References

SOCS1 JAK2 [63]

Vav [61]

IRS1 and IRS2 [66]

GM-CSF receptor βc 
subunit

[60]

Cdh1 [65]

p65 [67]

Mal [64]

HPV E7 [62]

SOCS6 Cas [69]

SOCS7 Dab1 [86]

SPSB1, 2, and 4 iNOS [93, 94, 98, 99]

SPSB1 TGF-β type II receptor [102]

ASB2 Filamin A and B [107–110]

Jak3 [112, 113]

ASB3 TNF-R2 [115]

ASB4 IRS4 [118]

ID2 [124]

ASB6 APS [125]

ASB9 CKB [130, 131]

uMtCK [132]

ASB11 DeltaA (in Danio rerio) [139, 140]

Ribophorin 1 [104]

WSB1 HIPK2 [144]

D2 [160]

pVHL [165]

RhoGDI2 [166]

Rab40 Rap2 GTPase [167]

Elongin A Rpb1 [170]

Vif (human immunodefi‑
ciency virus)

APOBEC3F [188]

APOBEC3G [186]

BZLF1 (Epstein–Barr virus) p53 [224, 225]

E1B55K (adenovirus) p53 [235, 236, 239]

Mre11 [227]

DNA ligase IV [241, 242]

integrin α3 [243]

Rep52 and capsid proteins [244, 245]

LANA (Kaposi’s sarcoma–
associated herpesvirus)

pVHL and p53 [254]
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b
CIS     NP_037456        255 VDCLPLPRRMADYLR 269
SOCS1   NP_003736        191 LARIPLNPVLRDYLS 205
SOCS2   NP_003868        178 IWGLPLPTRLKDYLE 192
SOCS3   NP_003946        207 VTQLPGPIREFLDQY 221
SOCS4   NP_955453        406 IDALPIPSSMKLYLK 420
SOCS5   NP_659198        501 IDGLPLPSMLQDFLK 505
SOCS6   NP_004223        517 IQKLPLPNKMKDYLQ 531
SOCS7   NP_055413        535 IPDLPLPKPLISYIR 549
WSB1    NP_056441        404 VQELPIPSKLLEFLS 418
WSB2    NP_061109        386 VLALPIPKKMKEFLT 400
SPSB1   NP_079382        257 IHTLPLPASLKAYLL 271
SPSB2   NP_001139788     247 VSALPLPPAMKRYLL 261
SPSB3   NP_543137        296 LEGLPLPPGLKQVLH 310
SPSB4   NP_543138        257 ISSLPLPQSLKNYLQ 271
ASB1    NP_057198        319 IPSLPLPDPIKKFLL 333
ASB2    NP_001189358     616 IDTLPLPGRLIRYLK 630
ASB3    NP_057199        485 ISQLPLPRSLHNYLL 499
ASB4    NP_057200        406 LLSLPLSLKKYLLLE 420
ASB5    NP_543150        313 IPQLQLPTLLKNFLQ 327
ASB6    NP_060343        396 VKALPLPDRLKWYLL 410
ASB7    NP_937886        298 LDELPIAKVMKDYLK 312
ASB8    NP_077000        271 VKGLPLPASLKEYLL 285
ASB9    NP_001026909     278 ITKLVLPEDLKQFLL 292
ASB10   NP_001135931     445 LPRLPLPPRLLRYLQ 459
ASB11   NP_543149        307 IHKLHLPEPLERFLL 321
ASB12   NP_569059        301 INQLDIPPMLISYLK 315
ASB13   NP_078977        262 IAKLNIPPRLIDYLS 276
ASB14   NP_001136205     557 MSFLPLPNRLKAYVL 571
ASB15   NP_563616        560 VEKLPLPPAIQRYIL 574
ASB16   NP_543139        431 ATRLPLPPLLRDYLL 445
ASB17   NP_543144        278 IFSLLIPARLQNYLN 292
ASB18   NP_997721        444 IPLLPLPKPLQNYLL 458
Rab-40A NP_543155        209 VDKLPLPSTLRSHLK 223
Rab-40B NP_006813        209 VDKLPLPIALRSHLK 223
Rab-40C NP_066991        209 IDKLPLPVTIKSHLK 223
MUF1    NP_006360         65 VWALPGPILQSILPL 79
EloA    NP_003189        593 FEVGGVPYSVLEPVL 607

Consensus                    --LP P-- --YL-
  FI

a

BC bo
x

Cul5
 bo

x
SOCS box

CIS SH2

SOCS1 SH2

WSB1 WD40WD40WD40WD40WD40WD40WD40WD40

SPSB1 SPRY

ASB1 Ank Ank Ank Ank Ank Ank

Rab-40A GTPase

MUF1 LRR

Fig. 3  Domain organization of SOCS box proteins. a The SOCS box consists of a BC box and a Cul5 box in the order indicated. SH2 Src homology 
2 phosphotyrosine-binding domain, WD40 WD40 repeats, SPRY sp1A/ryanodine receptor domain, Ank ankyrin repeats, LRR leucine-rich repeats, 
GTPase GTPase domain. b Alignment of amino acid sequences of Cul5 boxes present in selected SOCS box proteins. Consensus amino acids are 
highlighted by bold font. The GenBank™ accession numbers of each protein are indicated. Φ hydrophobic residue
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Tumor necrosis factor receptor type 2 (TNF-R2) is 
polyubiquitinated by ASB3 and targeted for proteasomal 
degradation [115]. Thereby, ASB3 negatively regulates 
TNF-R2-mediated cellular responses initiated by TNF-α 
[115].

Insulin receptor substrate 4 (IRS4) is expressed pre-
dominantly in the pituitary, thymus, and brain [116]. 
IRS4 is an adaptor molecule involved in signal transduc-
tion by both insulin and leptin, and is widely expressed 
throughout the hypothalamus [117]. ASB4 colocalizes 
and interacts with IRS4 in hypothalamic neurons and 
polyubiquitinates IRS4 for degradation to decrease insu-
lin signaling [118]. Downregulation of ASB4 in HCC 
cells hinders cell migration and invasion, whereas over-
expression of ASB4 increases the migration rate; ASB4 
is downregulated by miR-200a [119]. ASB4, which is 
highly differentially expressed in the vascular lineage 
during development [120], is an oxygen-sensitive ubiqui-
tin ligase that is abundantly expressed in the developing 
placenta and is upregulated during the differentiation of 
embryonic stem cells into endothelial cell lineages [121]. 
Inhibitor of DNA binding 2 (ID2) negatively regulates 
vascular differentiation during development [122, 123], 
and ASB4 promotes the ubiquitination and proteasomal 
degradation of ID2 [124]. ASB4-deficient mice pheno-
copy human pre-eclampsia, including hypertension and 
proteinuria in late-stage pregnant females, indicating that 
ASB4 mediates vascular differentiation in the placenta 
through the degradation of ID2 [124].

ASB6 is expressed in 3T3-L1 adipocytes but not in 
fibroblasts, and may regulate the insulin signaling path-
way in adipocytes by promoting the degradation of 
adapter protein with a pleckstrin homology and SH2 
domain (APS) [125].

The crystal structure of ASB9 with or without Elongin 
B and C has been determined [126–128]. ASB9 alone is 
unstable, whereas it forms a stable complex with Elongin 
B and C that also binds with high affinity to the Cul5N-
terminal domain (Cul5NTD) but not to Cul2NTD [129]. 
ASB9 polyubiquitinates and decreases the levels of cre-
atine kinase B (CKB) and ubiquitous mitochondrial cre-
atine kinase (uMtCK) [130–132]. CK plays a major role 
in cellular energy metabolism in non-muscle cells [133]. 
CKB is overexpressed in a number of tumors, including 
neuroblastoma, small cell lung carcinoma, colon and rec-
tal adenocarcinoma, and breast and prostate carcinoma 
[133, 134]. Furthermore, high ASB9 mRNA expression is 
correlated with good prognosis, and knockdown of ASB9 
increases colorectal cancer (CRC) cell invasiveness [135]. 
ASB9 upregulation may result in a good prognosis for 
CRC by promoting the degradation of CKB and uMtCK.

The Notch signaling pathway is essential for the 
spatio-temporal regulation of cell fate [136–138]. The 

single-pass transmembrane protein delta acts as a ligand 
for the Notch receptor. Danio rerio Asb11 (d-Asb11) reg-
ulates compartment size in the endodermal and neuronal 
lineages by promoting the ubiquitination and degrada-
tion of deltaA but not deltaD, leading to the activation 
of the canonical Notch pathway [139, 140]. Knockdown 
of d-Asb11 downregulates specific delta-Notch ele-
ments and their transcriptional targets, whereas these 
are induced when d-Asb11 is misexpressed in zebrafish 
embryos [139]. These data indicate that d-Asb11 regu-
lates delta- Notch signaling for the fine-tuning of lateral 
inhibition gradients between deltaA and Notch [139]. 
Mutant zebrafish lacking the Cul5 box, which results in 
the inability to degrade delta, are defective in Notch sign-
aling, as indicated by the impaired expression of Notch 
target genes [141].

Forced expression of d-asb11 impairs terminal dif-
ferentiation and increases proliferation in the myogenic 
progenitor compartment [142]. By contrast, mutation 
of d-asb11 causes premature differentiation of muscle 
progenitors and delays regenerative responses in adult 
injured muscle, suggesting that d-asb11 is a princi-
pal regulator of embryonic as well as adult regenerative 
myogenesis [142]. ASB11 is an endoplasmic reticulum 
(ER)-associated ubiquitin ligase that promotes the ubiq-
uitination and degradation of Ribophorin 1, an integral 
protein of the oligosaccharyltransferase (OST) glycosyla-
tion complex, which N-glycosylates newly synthesized 
proteins in the rough ER [104, 143].

WD repeat and SOCS box‑containing protein 1 (WSB1)
WSB1 polyubiquitinates homeodomain-interacting pro-
tein kinase 2 (HIPK2) [144]. HIPK2 interacts with a vari-
ety of transcription factors, the p300/CBP co-activator, 
and the Groucho/TLE co-repressor [145–152]. Function-
ally, HIPK2 prevents apoptosis mediated by p53, CtBP, 
Axin, Brn3, Sp100, TP53INP1, and PML [153–157]. The 
loss of HIPK2 reduces apoptosis and increases the num-
bers of trigeminal ganglia, whereas overexpression of 
HIPK2 in the developing sensory and sympathetic neu-
rons promotes apoptosis [153, 158]. DNA damaging 
agents such as adriamycin or cisplatin prevent the WSB1-
mediated degradation of HIPK2, which thereby remains 
active and stable for the induction of apoptosis [144].

WSB1 is induced by sonic hedgehog (Shh) in devel-
oping limb buds and other embryonic structures [159]. 
Thyroid hormone-activating enzyme type 2 iodothyro-
nine deiodinase (D2) is polyubiquitinated by WSB1 [160]. 
Ubiquitination of Shh-induced D2 by WSB1 induces 
parathyroid hormone-related peptide (PTHrP), thereby 
regulating chondrocyte differentiation [160].

Although WSB1 binds to the interleukin-21 receptor 
(IL-21R), WSB1 inhibits the degradation of the mature 
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form of IL-21R [161]. Mechanistically, WSB1 associ-
ates with the intracytoplasmic region of IL-21R and 
facilitates the maturation of IL-21R from an N-linked 
glycosylated form to a fully glycosylated mature form 
[161].

The von Hippel-Lindau tumor suppressor pVHL is a 
ubiquitin ligase that targets hypoxia-inducible factor-α 
(HIF-α) for proteasomal degradation in normoxia [162, 
163]. Dysregulation and accumulation of HIF-α upregu-
lates downstream target gene expression and contributes 
to tumor progression, promoting invasion, metastasis, 
and angiogenesis [162, 163]. WSB1 is induced under 
hypoxic conditions [164] and promotes pVHL ubiquit-
ination and proteasomal degradation, thereby stabiliz-
ing HIF-α under both normoxic and hypoxic conditions 
[165]. WSB1 upregulates gene expression regulated by 
HIF-1α and promotes cancer invasion and metastasis 
[165]. In a recent study, quantitative proteomic screening 
and functional analyses revealed that WSB1 promotes 
the ubiquitination and proteasomal degradation of the 
Rho-binding protein RhoGDI2, thereby activating Rac1 
to stimulate tumor cell motility and invasion in hypoxia-
driven osteosarcoma [166].

Rab40 complex
Xenopus homolog of Rab40 (XRab40) is localized at 
the Golgi apparatus and interacts with Elongin B/C and 
Cul5 [167]. Although the XRab40 complex ubiquitinates 
the Rap2 GTPase, it may not destabilize Rap2 [167]. The 
XRab40 complex regulates the membrane localization of 
dishevelled (Dsh), a key signaling molecule in the Wnt 
pathway, through Rap2 and its effector misshapen/Nck-
interacting kinase (XMINK) [167]. The XRab40 complex, 
Rap2, and XMINK are suggested to play a crucial role in 
the regulation of the noncanonical Wnt pathway.

MUF1 complex
MUF1 binds the Cul5/Elongin BC complex and has ubiq-
uitin ligase activity; however, its substrate has not been 
identified to date [168]. MUF1 is a ubiquitously expressed 
nuclear protein that, upon coexpression with RhoBTB, 
a Cul3-type ubiquitin ligase, is partially retained in the 
cytoplasm, where both proteins colocalize [169].

Elongin ABC complex
The Elongin ABC complex interacts with Cul5 and Rbx2 
and polyubiquitinates the large subunit of RNA polymer-
ase II (Rpb1) in response to UV irradiation [170].

UV irradiation leads to the phosphorylation of Rpb1 at 
Ser5, which increases the interaction between Elongin A 
and Rpb1 [170]. UV irradiation-dependent ubiquitina-
tion and proteasomal degradation of Rpb1 are signifi-
cantly suppressed in Elongin A-deficient cells [170].

Virus‑related Cul5‑containing ubiquitin ligases
Human immunodeficiency virus‑1 (HIV‑1)
Apolipoprotein B editing complex 3G (CEM15/
APOBEC3G)(A3G), a human cytidine deaminase, is 
a broad antiviral factor against human HIV-1, simian 
immunodeficiency virus (SIV), mouse leukemia virus, 
and hepatitis B virus [171–179]. A3G induces C to U 
mutations in the viral minus DNA strand during reverse 
transcription, resulting in deleterious G to A mutations 
in the coding strand (Fig. 4) [171, 173–175, 179–181].

The HIV-1 virion infectivity factor (Vif ) is essential for 
viral evasion of the host antiviral factor A3G [182, 183]. 
Vif interacts with Cul5, Elongins B and C, and Rbx1/Rbx2 
[184–186]. This complex interacts with A3G and induces 
its ubiquitination and degradation (Fig.  4) [185–187]. 
HIV Vif can also bind APOBEC3F (A3F) and induce its 
polyubiquitination and degradation [188]. The SIV from 
rhesus macaques (SIVmac) Vif also forms a Cul5-con-
taining ubiquitin ligase complex in human cells [186], 
and neddylation of Cul5 by the NEDD8-conjugating 
enzyme UBE2F is required for Vif-mediated degradation 
of A3G [189].

In the absence of the Vif protein, A3G is packaged into 
viral particles and functions by hypermutating viral DNA 
in the newly infected cell [171, 173–176, 179]. Lysine-free 
A3G (all lysine residues are mutated to arginine) is still 
degraded by the proteasome in a Vif-dependent manner 

APOBEC3

Cul5

Rbx2

E2
Ubiquitin

Vif

CBF-

Production

Hypermutations

HIV

HIV

APOBEC3

Elongin C

Elongin B

Fig. 4  Degradation of APOBEC3 by the HIV Vif protein. APOBEC3 
introduces nonsense and/or missense mutations in the HIV genome, 
thereby showing antivirus activity. The HIV-1 Vif protein forms a com‑
plex with Cul5, the Elongin B/C heterodimer, Rbx2, E2, ubiquitin (Ub), 
and CBF-β. The Vif complex targets APOBEC3 for polyubiquitination 
and proteasomal degradation
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[190], and polyubiquitination of Vif is critical for A3G 
proteasomal degradation [190].

Infection with HIV-1 causes cell cycle arrest or delay in 
the G2 phase, when the expression of the viral genome 
is optimal and long terminal repeat (LTR) is most active 
[191–193]. Several controversial reports suggest that 
viral protein R (Vpr) and/or Vif mediate cell cycle arrest. 
Vpr of HIV-1 alter the cell cycle by inhibiting the activa-
tion of Cdc2/Cdk1, a G2/M checkpoint regulating kinase, 
to prevent or delay entry into mitosis [194–196]. Vif and 
Vpr acting together, but not alone, cause G2 arrest [197]. 
However, Vif was reported to cause G2 arrest [198], and 
also to block Vpr-mediated G2 arrest [199]. Neverthe-
less, Vif-mediated G2 arrest is Cul5-dependent [200]. Vif 
also recruits the transcription cofactor CBF-β, which is 
required for Vif-mediated degradation of A3G but not 
A3A [201–203]. CBF-β is a subunit of a heterodimeric 
transcription factor without DNA-binding activity that 
regulates the folding and DNA-binding activity of part-
ner RUNX family proteins, which is crucial for the devel-
opment and differentiation of diverse cell types, including 
T lymphocytes [203–205].

Vif is phosphorylated on several serine and threonine 
residues, among which Ser144 plays a crucial role in reg-
ulating HIV-1 replication [206, 207]. Mutation of Ser144 
to Ala suppresses Vif activity and causes >90 % inhibition 
of HIV-1 replication [206]. Mechanistically, phosphoryla-
tion at Ser144 negatively regulates the binding of the Vif 
BC box to Elongin C [208].

Vif contains a BC box and a SOCS box that are required 
for the interaction with ElonginB/C and Cul5, respec-
tively [51, 209, 210]. Binding of Elongin B/C changes 
the conformation of Vif, facilitating its interaction with 
CBF-β and Cul5 [211]. Although both Rbx1 and Rbx2 can 
interact with Cul5, only the knockdown of Rbx2, but not 
that of Rbx1, impairs Vif-induced A3G degradation [212].

Susceptibility to HIV-1 and disease progression may 
be affected by variation in human genes [213, 214]. Cul5 
is one of the genes in which signatures of selection have 
been reported [215]. Several single nucleotide poly-
morphisms (SNPs) in the CUL5 locus have been identi-
fied and shown to affect the rate of CD4+ T cell loss in 
patients infected with HIV-1 [216]. Cul5 haplotypes are 
grouped into two clusters with opposing effects, as clus-
ter I delays and cluster II accelerates CD4+ T cell loss 
[216]. Reduced APOBEC3 activity is associated with the 
Cul5 SNP6 minor allele [217]; however, the Cul5 SNP6 
has no effect on vertical transmission or progression to 
pediatric AIDS [218].

Epstein–Barr virus (EBV)
EBV, a human γ-herpesvirus, is associated with several 
B cell and epithelial cell malignancies, and there are two 

different infection states, latent and lytic [219]. BZLF1 
(known as Zta, EB1, or ZEBRA) is a transcriptional 
transactivator that induces EBV early gene expression to 
promote an EBV lytic cycle cascade [220–223]. BZLF1 
contains both a Cul2 box and a Cul5 box, thereby binding 
to both Cul2 and Cul5 [224]. BZLF1 polyubiquitinates 
and induces the degradation of p53, which inhibits apop-
tosis and is required for efficient viral propagation in the 
lytic replication stage [224, 225].

Human adenoviruses (Ad)
Human Ad are classified into six groups (A–F), and they 
comprise a large family of more than 50 different sero-
types [226]. The human adenovirus type 5 (Ad5) early-
region 4 34  kDa product from open reading frame 6 
(E4orf6) contains three BC boxes [227–229]. Although 
Ad5 E4orf6 forms a complex containing Cul5, Elongin 
B, Elongin C, and Rbx1, a Cul5 box is not found in Ad5 
E4orf6 (Fig.  5) [227, 229, 230]. Adenoviral early-region 
1B 55 kDa protein (E1B55K) associates with E4orf6 and 
the complex targets substrates for proteasomal degrada-
tion [227, 228, 231]. Although efficient substrate degra-
dation is dependent on the interaction with E1B55K in 
some cases, several substrates efficiently bind to E1B55K 
but are not degraded, whereas others are degraded with-
out detectable interactions with E1B55K [232]. These 
results indicate that transient interactions with E1B55K 
may be sufficient for substrate degradation and that the 
orientation of the substrate in the ubiquitin ligase com-
plex is probably crucial [232].

The E4orf6/E1B55K complex is essential for efficient 
viral replication, and some of its key substrates have been 
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Fig. 5  Degradation of substrate proteins by the adenoviral proteins 
E1B55K and E4orf6. The adenoviral protein E1B55K recognizes 
substrates to be polyubiquitinated, and also interacts with another 
adenoviral protein, E4orf6. E4orf6 further interacts with the Elongin 
B/C heterodimer, Cul5, and Rbx1, E2, and ubiquitin (Ub)
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identified, such as p53 [233–239], meiotic recombination 
11 (Mre11) [227, 240], DNA ligase IV [241, 242], integrin 
α3 [243], and the adeno-associated virus type 5 (AAV5) 
Rep52 and capsid proteins [244, 245].

The Mre11 complex, which consists of Mre11, RAD50, 
and Nijmegen breakage syndrome 1 (NBS1, also known 
as nibrin), detects DNA double strand breaks (DSBs) 
and induces p53-dependent apoptosis [246]. DNA ligase 
IV plays a pivotal role in repairing DSBs, and the muta-
tion of this gene results in ligase IV (LIG4) syndrome, 
which is characterized by pronounced radiosensitivity, 
genome instability, malignancy, immunodeficiency, and 
bone marrow abnormalities [247]. The heterodimer of 
integrin α and β subunits functions as a transmembrane 
receptor that links external signals to intracellular signal-
ing pathways. For example, integrin α3β1 binds a variety 
of extracellular matrix substrates, including fibronectin, 
collagen, vitronectin, and laminins [248]. Degradation 
of integrin α3 mediated by the E4orf6/E1B55K complex 
might be involved in cell detachment from the extracel-
lular matrix, which may contribute to virus spread [243].

Although the human Ad5 E4orf6 complex binds Cul5, 
Cul2 is primarily present in the Ad12 and Ad40 E4orf6 
complexes, as they contain a Cul2 box [229, 249]. The 
Ad16 E4orf6 complex binds Cul2 as well as Cul5 and is 
not able to degrade p53 and integrin α3 [229].

The anti-apoptotic protein Gam1 is an essential viral 
protein encoded by the avian adenovirus CELO (chicken 
embryo lethal orphan) [250, 251] that inhibits cellu-
lar sumoylation [252]. Gam1 contains a SOCS box-like 
domain and binds Cul2, Cul5, Elongin B/C, and Rbx1, 
targeting the SUMO E1 enzyme SAE1 for polyubiquitina-
tion and degradation [253].

LANA complex
Kaposi’s sarcoma-associated herpesvirus (KSHV)-
encoded latency-associated nuclear antigen (LANA) 
contains a putative SOCS box and forms a complex with 
Elongin B/C and Cul5 [254]. This complex promotes the 
polyubiquitination and degradation of pVHL and p53 
[254, 255]. Thus, LANA provides a favorable environ-
ment for the progression of KSHV-infected tumor cells 
by downregulating tumor suppressors.

Substrates of Cul5 (adaptor protein is unknown)
DEPTOR
DEPTOR binds mTOR and inhibits the mTOR complex 
1 (mTORC1) and mTORC2 pathways [256]. DEPTOR 
accumulates upon nutrient deprivation and contributes 
to the induction of autophagy. In response to mitogens, 
DEPTOR is phosphorylated on three serine residues 
in a conserved degron and is recognized by F box pro-
tein βTrCP for polyubiquitination and consequent 

proteasomal degradation [257–259]. The Cul5/Elongin 
B complex also targets DEPTOR for ubiquitin-protea-
somal degradation under nutrient-rich conditions, and 
knockdown of Cul5, but not of Cul2, results in autophagy 
induction [260]. Thus, Cul5 temporally controls the 
autophagy response.

Heat shock protein 90 (Hsp90) client proteins
Hsp90 is a molecular chaperone that facilitates the sta-
bilization and activation of approximately 350 client pro-
teins [261]. Pharmacologic inhibition of Hsp90 results in 
the Cul5 and Rbx2-dependent proteasomal degradation 
of client proteins including ErbB2, BRAF(V600E), AKT, 
CDK4, and HIF-1α, indicating the crucial role of Cul5 
in the response to Hsp90 inactivation [262–266]. ErbB2 
degradation mediated by Cul5 is independent of Elongin 
B/C function, as indicated by the fact that dominant neg-
ative Elongin C, which can bind Cul5 but not the SOCS 
box in the substrate receptor, has no effect on the degra-
dation of ErbB2 [262].

TRIAD1
Two RING fingers and DRIL (double RING finger linked) 
1 (TRIAD1) contains a RING-in-between-RING (RBR) 
domain and markedly inhibits myeloid colony formation 
[267]. TRIAD1-deficient mice die because of a severe 
multiorgan immune response [268]. Binding of ned-
dylated Cul5 and Rbx2 to TRIAD1 enhances TRIAD1 
ubiquitin ligase activity [269].

Conclusions
Cul5-containing ubiquitin ligases regulate a variety of 
signaling pathways by targeting particular substrates for 
proteasomal degradation or competing for protein–pro-
tein interactions. However, many Cul5-containing ubiq-
uitin ligases remain to be studied, and a complete list of 
substrates or binding proteins of Cul5 is not available. 
Considering that some viruses hijack Cul5 to degrade 
antiviral proteins, it might be better to study the func-
tion of Cul5 during virus infection. Certain viruses tar-
get Elongin C-interacting Cul5 (and in some cases Cul2) 
for hijacking, although the cause remains undetermined. 
Studies focusing on Elongin C might shed light on the 
physiological functions of Cul5.
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