Doxsey S: Duplicating dangerously: linking centrosome duplication and aneuploidy. Mol Cell 2002, 10: 439–440. 10.1016/S1097-2765(02)00654-8
Article
CAS
PubMed
Google Scholar
Fukasawa K: Centrosome amplification, chromosome instability and cancer development. Cancer Lett 2005, 230: 6–19. 10.1016/j.canlet.2004.12.028
Article
CAS
PubMed
Google Scholar
Tsou MF, Stearns T: Mechanism limiting centrosome duplication to once per cell cycle. Nature 2006, 442: 947–951. 10.1038/nature04985
Article
CAS
PubMed
Google Scholar
Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR: Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 1995, 130: 105–115. 10.1083/jcb.130.1.105
Article
CAS
PubMed
Google Scholar
Wong C, Stearns T: Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nat Cell Biol 2003, 5: 539–544. 10.1038/ncb993
Article
CAS
PubMed
Google Scholar
D'Assoro AB, Busby R, Suino K, Delva E, Almodovar-Mercado GJ, Johnson H, Folk C, Farrugia DJ, Vasile V, Stivala F, Salisbury JL: Genotoxic stress leads to centrosome amplification in breast cancer cell lines that have an inactive G1/S cell cycle checkpoint. Oncogene 2004, 23: 4068–4075. 10.1038/sj.onc.1207568
Article
PubMed
CAS
Google Scholar
Sugihara E, Kanai M, Matsui A, Onodera M, Schwab M, Miwa M: Enhanced expression of MYCN leads to centrosome hyperamplification after DNA damage in neuroblastoma cells. Oncogene 2004, 23: 1005–1009. 10.1038/sj.onc.1207216
Article
CAS
PubMed
Google Scholar
Kawamura K, Morita N, Domiki C, Fujikawa-Yamamoto K, Hashimoto M, Iwabuchi K, Suzuki K: Induction of centrosome amplification in p53 siRNA-treated human fibroblast cells by radiation exposure. Cancer Sci 2006, 97: 252–258. 10.1111/j.1349-7006.2006.00168.x
Article
CAS
PubMed
Google Scholar
Dodson H, Bourke E, Jeffers LJ, Vagnarelli P, Sonoda E, Takeda S, Earnshaw WC, Merdes A, Morrison C: Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO J 2004, 23: 3864–3873. 10.1038/sj.emboj.7600393
Article
CAS
PubMed Central
PubMed
Google Scholar
Bertrand P, Lambert S, Joubert C, Lopez BS: Overexpression of mammalian Rad51 does not stimulate tumorigenesis while a dominant-negative Rad51 affects centrosome fragmentation, ploidy and stimulates tumorigenesis, in p53-defective CHO cells. Oncogene 2003, 22: 7587–7592. 10.1038/sj.onc.1206998
Article
CAS
PubMed
Google Scholar
Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX: Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 1999, 3: 389–395. 10.1016/S1097-2765(00)80466-9
Article
CAS
PubMed
Google Scholar
Starita LM, Machida Y, Sankaran S, Elias JE, Griffin K, Schlegel BP, Gygi SP, Parvin JD: BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number. Mol Cell Biol 2004, 24: 8457–8466. 10.1128/MCB.24.19.8457-8466.2004
Article
CAS
PubMed Central
PubMed
Google Scholar
Hut HM, Rembacz KP, van Waarde MA, Lemstra W, van Cappellen WA, Kampinga HH, Sibon OC: Dysfunctional BRCA1 is only indirectly linked to multiple centrosomes. Oncogene 2005, 24: 7619–7623. 10.1038/sj.onc.1208859
Article
CAS
PubMed
Google Scholar
Ko MJ, Murata K, Hwang DS, Parvin JD: Inhibition of BRCA1 in breast cell lines causes the centrosome duplication cycle to be disconnected from the cell cycle. Oncogene 2006, 25: 298–303. 10.1038/sj.onc.1209683
Article
CAS
PubMed
Google Scholar
Sankaran S, Starita LM, Simons AM, Parvin JD: Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function. Cancer Res 2006, 66: 4100–4107. 10.1158/0008-5472.CAN-05-4430
Article
CAS
PubMed
Google Scholar
Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J, Ross G, Ashworth A: Absence of Brca2 causes genome instability by chromosome breakage and loss associated with centrosome amplification. Curr Biol 1999, 9: 1107–1110. 10.1016/S0960-9822(99)80479-5
Article
CAS
PubMed
Google Scholar
Araki M, Masutani C, Takemura M, Uchida A, Sugasawa K, Kondoh J, Ohkuma Y, Hanaoka F: Centrosome protein centrin 2/caltractin 1 is part of the xeroderma pigmentosum group C complex that initiates global genome nucleotide excision repair. J Biol Chem 2001, 276: 18665–18672. 10.1074/jbc.M100855200
Article
CAS
PubMed
Google Scholar
Nishi R, Okuda Y, Watanabe E, Mori T, Iwai S, Masutani C, Sugasawa K, Hanaoka F: Centrin 2 stimulates nucleotide excision repair by interacting with xeroderma pigmentosum group C protein. Mol Cell Biol 2005, 25: 5664–5674. 10.1128/MCB.25.13.5664-5674.2005
Article
CAS
PubMed Central
PubMed
Google Scholar
Thompson JR, Ryan ZC, Salisbury JL, Kumar R: The structure of the human centrin 2-xeroderma pigmentosum group C protein complex. J Biol Chem 2006, 281: 18746–18752. 10.1074/jbc.M513667200
Article
CAS
PubMed
Google Scholar
Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF: Abnormal centrosome amplification in the absence of p53. Science 1996, 271: 1744–1747. 10.1126/science.271.5256.1744
Article
CAS
PubMed
Google Scholar
Mussman JG, Horn HF, Carroll PE, Okuda M, Tarapore P, Donehower LA, Fukasawa K: Synergistic induction of centrosome hyperamplification by loss of p53 and cyclin E overexpression. Oncogene 2000, 19: 1635–1646. 10.1038/sj.onc.1203460
Article
CAS
PubMed
Google Scholar
Kawamura K, Izumi H, Ma Z, Ikeda R, Moriyama M, Tanaka T, Nojima T, Levin LS, Fujikawa-Yamamoto K, Suzuki K, Fukasawa K: Induction of centrosome amplification and chromosome instability in bladder cancer cells by p53 mutation and cyclin E overexpression. Cancer Res 2004, 64: 4800–4809. 10.1158/0008-5472.CAN-03-3908
Article
CAS
PubMed
Google Scholar
Sugihara E, Kanai M, Saito S, Nitta T, Toyoshima H, Nakayama K, Nakayama KI, Fukasawa K, Schwab M, Saya H, Miwa M: Suppression of centrosome amplification after DNA damage depends on p27 accumulation. Cancer Res 2006, 66: 4020–4029. 10.1158/0008-5472.CAN-05-3250
Article
CAS
PubMed
Google Scholar
Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G: Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 1999, 283: 851–854. 10.1126/science.283.5403.851
Article
CAS
PubMed
Google Scholar
Lacey KR, Jackson PK, Stearns T: Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 1999, 96: 2817–2822. 10.1073/pnas.96.6.2817
Article
CAS
PubMed Central
PubMed
Google Scholar
Matsumoto Y, Hayashi K, Nishida E: Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 1999, 9: 429–432. 10.1016/S0960-9822(99)80191-2
Article
CAS
PubMed
Google Scholar
Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA: Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1999, 1: 88–93. 10.1038/10054
Article
CAS
PubMed
Google Scholar
Hut HM, Lemstra W, Blaauw EH, van Cappellen GW, Kampinga HH, Sibon OC: Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol Biol Cell 2003, 14: 1993–2004. 10.1091/mbc.E02-08-0510
Article
CAS
PubMed Central
PubMed
Google Scholar
Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ: Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression. Cancer Res 2001, 61: 2212–2219.
CAS
PubMed
Google Scholar
Meraldi P, Honda R, Nigg EA: Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 2002, 21: 483–492. 10.1093/emboj/21.4.483
Article
CAS
PubMed Central
PubMed
Google Scholar
Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM, Saunders WS: Spindle multipolarity is prevented by centrosomal clustering. Science 2005, 307: 127–129. 10.1126/science.1104905
Article
CAS
PubMed
Google Scholar
Khodjakov A, Cole RW, Oakley BR, Rieder CL: Centrosome-independent mitotic spindle formation in vertebrates. Curr Biol 2000, 10: 59–67. 10.1016/S0960-9822(99)00276-6
Article
CAS
PubMed
Google Scholar
Hinchcliffe EH, Miller FJ, Cham M, Khodjakov A, Sluder G: Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 2001, 291: 1547–1550. 10.1126/science.1056866
Article
CAS
PubMed
Google Scholar
Khodjakov A, Rieder CL: Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 2001, 153: 237–42. 10.1083/jcb.153.1.237
Article
CAS
PubMed Central
PubMed
Google Scholar
Quintyne NJ, Schroer TA: Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J Cell Biol 2002, 159: 245–254. 10.1083/jcb.200203089
Article
CAS
PubMed Central
PubMed
Google Scholar
Augustin A, Spenlehauer C, Dumond H, Menissier-De Murcia J, Piel M, Schmit AC, Apiou F, Vonesch JL, Kock M, Bornens M, De Murcia G: PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression. J Cell Sci 2003, 116: 1551–1562. 10.1242/jcs.00341
Article
CAS
PubMed
Google Scholar
Gromley A, Jurczyk A, Silibourne J, Halilovic F, Mogensen M, Groisman I, Blomberg M, Doxsey S: A novel human protein of the maternal centriole is required for the final stages of cytokinesis and entry into S phase. J Cell Biol 2003, 161: 535–545. 10.1083/jcb.200301105
Article
CAS
PubMed Central
PubMed
Google Scholar
Keryer G, Witczak O, Delouve A, Kemmner WA, Rouillard D, Tasken K, Bornens M: Dissociating the centrosomal matrix protein AKAP450 from centrioles impairs centriole duplication and cell cycle progression. Mol Biol Cell 2003, 14: 2436–2446. 10.1091/mbc.E02-09-0614
Article
CAS
PubMed Central
PubMed
Google Scholar
Srsen V, Gnadt N, Dammermann A, Merdes A: Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle. J Cell Biol 2006, 174: 625–630. 10.1083/jcb.200606051
Article
CAS
PubMed Central
PubMed
Google Scholar
Ben-Porath I, Weinberg RA: When cells get stressed: an integrative view of cellular senescence. J Clin Invest 2004, 113: 8–13. 10.1172/JCI200420663
Article
CAS
PubMed Central
PubMed
Google Scholar
Murray AW: Cell cycle. Centrioles at the checkpoint. Science 2001, 291: 1499–1502. 10.1126/science.291.5508.1499
Article
CAS
PubMed
Google Scholar
Fry AM, Mayor T, Nigg EA: Regulating centrosomes by protein phosphorylation. Curr Top Dev Biol 2000, 49: 291–312.
Article
CAS
PubMed
Google Scholar
Morris VB, Brammall J, Noble J, Reddel R: p53 localizes to the centrosomes and spindles of mitotic cells in the embryonic chick epiblast, human cell lines, and a human primary culture: An immunofluorescence study. Exp Cell Res 2000, 256: 122–130. 10.1006/excr.2000.4800
Article
CAS
PubMed
Google Scholar
Matsumoto Y, Maller JL: A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science 2004, 306: 885–888. 10.1126/science.1103544
Article
CAS
PubMed
Google Scholar
Tucker JB, Paton CC, Richardson GP, Mogensen MM, Russell IJ: A cell surface-associated centrosomal layer of microtubule-organizing material in the inner pillar cell of the mouse cochlea. J Cell Sci 1992, 102: 215–226.
PubMed
Google Scholar
Meads T, Schroer TA: Polarity and nucleation of microtubules in polarized epithelial cells. Cell Motil Cytoskeleton 1995, 32: 273–288. 10.1002/cm.970320404
Article
CAS
PubMed
Google Scholar
Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M: Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 2000, 113: 3013–3023.
CAS
PubMed
Google Scholar
Tassin AM, Maro B, Bornens M: Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol 1985, 100: 35–46. 10.1083/jcb.100.1.35
Article
CAS
PubMed
Google Scholar
Bugnard E, Zaal KJ, Ralston E: Reorganization of microtubule nucleation during muscle differentiation. Cell Motil Cytoskeleton 2005, 60: 1–13. 10.1002/cm.20042
Article
PubMed
Google Scholar
Engelman JA, Lisanti MP, Scherer PE: Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem 1998, 273: 32111–32120. 10.1074/jbc.273.48.32111
Article
CAS
PubMed
Google Scholar
Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang JY, Puri PL: p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol 2000, 20: 3951–3964. 10.1128/MCB.20.11.3951-3964.2000
Article
CAS
PubMed Central
PubMed
Google Scholar
Houde M, Laprise P, Jean D, Blais M, Asselin C, Rivard N: Intestinal epithelial cell differentiation involves activation of p38 mitogen-activated protein kinase that regulates the homeobox transcription factor CDX2. J Biol Chem 2001, 276: 21885–21894. 10.1074/jbc.M100236200
Article
CAS
PubMed
Google Scholar
Laprise P, Chailler P, Houde M, Beaulieu JF, Boucher MJ, Rivard N: Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J Biol Chem 2002, 277: 8226–8234. 10.1074/jbc.M110235200
Article
CAS
PubMed
Google Scholar
Cabane C, Englaro W, Yeow K, Ragno M, Derijard B: Regulation of C2C12 myogenic terminal differentiation by MKK3/p38alpha pathway. Am J Physiol Cell Physiol 2003, 284: C658-C666.
Article
CAS
PubMed
Google Scholar
Keren A, Tamir Y, Bengal E: The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 2006, 252: 224–230. 10.1016/j.mce.2006.03.017
Article
CAS
PubMed
Google Scholar
Vidair CA, Huang RN, Doxsey SJ: Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int J Hyperthermia 1996, 12: 681–695.
Article
CAS
PubMed
Google Scholar
Vidair CA, Doxsey SJ, Dewey WC: Thermotolerant cells possess an enhanced capacity to repair heat-induced alterations to centrosome structure and function. J Cell Physiol 1995, 163: 194–203. 10.1002/jcp.1041630122
Article
CAS
PubMed
Google Scholar