Hirano T, Kobayashi R, Hirano M. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila barren protein. Cell. 1997;89:511–21.
Article
CAS
PubMed
Google Scholar
Kalitsis P, Zhang T, Marshall KM, Nielsen CF, Hudson DF. Condensin, master organizer of the genome. Chromosome Res. 2017;25(1):61–76.
Article
CAS
PubMed
Google Scholar
Yong-Gonzalez V, Wang BD, Butylin P, Ouspenski I, Strunnikov A. Condensin function at centromere chromatin facilitates proper kinetochore tension and ensures correct mitotic segregation of sister chromatids. Genes Cells. 2007;12(9):1075–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renshaw MJ, Ward JJ, Kanemaki M, Natsume K, Nédélec FJ, Tanaka TU. Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation. Dev Cell. 2010;19(2):232–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsson L. Chromatin compaction by condensin I, intra-kinetochore stretch and tension, and anaphase onset, in collective spindle assembly checkpoint interaction. J Phys Condens Matter. 2014;26(15):155102.
Article
PubMed
CAS
Google Scholar
Oliveira RA, Coelho PA, Sunkel CE. The condensin I subunit Barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Mol Cell Biol. 2005;25(20):8971–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura K, Cuvier O, Hirano T. Chromosome condensation by a human condensin complex in Xenopus egg extracts. J Biol Chem. 2001;276(8):5417–20.
Article
CAS
PubMed
Google Scholar
Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell. 2003;115(1):109–21.
Article
CAS
PubMed
Google Scholar
Hirano T, Mitchison TJ. A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell. 1994;79:449–58.
Article
CAS
PubMed
Google Scholar
Jessberger R, Frei C, Gasser MS. Chromosome dynamics: the SMC protein family. Curr Opin Genet Dev. 1998;8(2):254–9.
Article
CAS
PubMed
Google Scholar
Schmiesing JA, Jr Ball A R, Gregson HC, Alderton JM, Zhou S, Yokomori K. Identification of two distinct human SMC protein complexes involved in mitotic chromosome dynamics. Proc Natl Acad Sci USA. 1998;95:12906–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmiesing JA, Gregson HC, Zhou S, Yokomori K. A human condensin complex containing hCAP-C-hCAP-E and CNAP1, a homolog of Xenopus XCAP-D2, colocalizes with phosphorylated histone H3 during the early stage of mitotic chromosome condensation. Mol Cell Biol. 2000;20(18):6996–7006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cubizolles F, Legagneux V, Le Guellec R, Chartrain I, Uzbekov R, Ford C, et al. pEg7, a new Xenopus protein required for mitotic chromosome condensation in egg extracts. J Cell Biol. 1998;143:1437–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steen RL, Cubizolles F, Le Guellec K, Collas P. A kinase-anchoring protein (AKAP) 95 recruits human chromosome-associated protein (hCAP)-D2/Eg7 for chromosome condensation in mitotic extract. J Cell Biol. 2000;149:531–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ball AR Jr, Schmiesing JA, Zhou C, Gregson HC, Okada Y, Doi T, et al. Identification of a chromosome-targeting domain in the human condensin subunit CNAP1/hCAP-D2/Eg7. Mol Cell Biol. 2002;22(16):5769–81.
Article
CAS
PubMed
Google Scholar
Hirano T. Condensin-based chromosome organization from bacteria to vertebrates. Cell. 2016;164(5):847–57.
Article
CAS
PubMed
Google Scholar
Hirano T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 2002;16(4):399–414.
Article
CAS
PubMed
Google Scholar
Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell. 2003;11:571–5.
Article
CAS
PubMed
Google Scholar
Yeong FM, Hombauer H, Wendt KS, Hirota T, Mudrak I, Mechtler K, et al. Identification of a subunit of a novel kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Curr Biol. 2003;13:2058–64.
Article
CAS
PubMed
Google Scholar
Neuwald AF, Hirano T. HEAT repeats associated with condensins, cohesins, and other complexes involved chromosome-related functions. Genome Res. 2000;10(10):1445–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Onn I, Aono N, Hirano M, Hirano T. Reconstitution and subunit geometry of human condensin complexes. EMBO J. 2007;26(4):1024–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andrade MA, Bork P. HEAT repeats in the Huntington’s disease protein. Nat Genet. 1995;11:115–6.
Article
CAS
PubMed
Google Scholar
Melby TE, Ciampaglio CN, Briscoe G, Erickson HP. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long antiparallel coiled coils folded at a flexible hinge. J Cell Biol. 1998;142(6):1595–604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson DE, Losada A, Erickson HP, Hirano T. Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol. 2002;156(3):419–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haering CH, Löwe J, Hochwagen A, Nasmyth K. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell. 2002;9(4):773–88.
Article
CAS
PubMed
Google Scholar
Kawahara K, Nakamura S, Katsu Y, Motooka D, Hosokawa Y, Kojima Y, et al. Cloning, expression, crystallization and preliminary X-ray crystallographic analysis of a human condensin SMC2 hinge domain with short coiled coils. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66(Pt 9):1067–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uchiyama S, Kawahara K, Hosokawa Y, Fukakusa S, Oki H, Nakamura S, et al. Structural basis for dimer formation of human condensin structural maintenance of chromosome proteins and its implications for single-stranded DNA recognition. J Biol Chem. 2015;290(49):29461–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, Dief EM, et al. Condensin Smc2-Smc4 dimers are flexible and dynamic. Cell Rep. 2016;14(8):1813–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimura K, Hirano T. Dual roles of the 11S regulatory subcomplex in condensin functions. Proc Natl Acad Sci USA. 2000;97(22):11972–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinoshita K, Hirano T. Dynamic organization of mitotic chromosomes. Curr Opin Cell Biol. 2017;46:46–53.
Article
CAS
PubMed
Google Scholar
Kakui Y, Rabinowitz A, Barry DJ, Uhlmann F. Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast. Nat Genet. 2017;49(10):1553–7.
Article
CAS
PubMed
Google Scholar
Howard-Till R, Loidl J. Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in Tetrahymena thermophila. Mol Biol Cell. 2017. https://doi.org/10.1091/mbc.E17-07-0451.
PubMed
Google Scholar
Rana V, Bosco G. Condensin regulation of genome architecture. J Cell Physiol. 2017;232(7):1617–25.
Article
CAS
PubMed
Google Scholar
Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM. Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci. 2004;117(26):6435–45.
Article
CAS
PubMed
Google Scholar
Ono T, Fang Y, Spector DL. HiranoT. Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell. 2004;15:3296–308.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutani T, Sakata T, Nakato R, Masuda K, Ishibashi M, Yamashita D, et al. Condensin targets and reduces unwound DNA structures associated with transcription in mitotic chromosome condensation. Nat Commun. 2015;6:7815.
Article
PubMed
PubMed Central
Google Scholar
Ono T, Sakamoto C, Nakao M, Saitoh N, Hirano T. Condensin II plays an essential role in reversible assembly of mitotic chromosomes in situ. Mol Biol Cell. 2017;28(21):2875–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gerlich D, Hirota T, Koch B, Peters JM, Ellenberg J. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr Biol. 2006;16:333–44.
Article
CAS
PubMed
Google Scholar
Takahashi M, Wakai T, Hirota T. Condensin I-mediated mitotic chromosome assembly requires association with chromokinesin KIF4A. Genes Dev. 2016;30(17):1931–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samoshkin A, Arnaoutov A, Jansen LE, Ouspenski I, Dye L, Karpova T, et al. Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLoS ONE. 2009;4(8):e6831.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhai L, Wang HZ, Tang W, Liu WG, Hao S, Zeng XL. Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells. Cell Biol Int. 2011;35(7):735–40.
Article
PubMed
Google Scholar
Samoshkin A, Dulev S, Loukinov D, Rosenfeld JA, Strunnikov AV. Condensin dysfunction in human cells induces nonrandom chromosomal breaks in anaphase, with distinct patterns for both unique and repeated genomic regions. Chromosoma. 2012;121(2):191–9.
Article
CAS
PubMed
Google Scholar
Shintomi K, Takahashi TS, Hirano T. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat Cell Biol. 2015;17:1014–23.
Article
CAS
PubMed
Google Scholar
Takemoto A, Kimura K, Yokoyama S, Hanaoka F. Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin. J Biol Chem. 2004;279(6):4551–9.
Article
CAS
PubMed
Google Scholar
Blank M, Lerenthal Y, Mittelman L, Shiloh Y. Condensin I recruitment and uneven chromatin condensation precede mitotic cell death in response to DNA damage. J Cell Biol. 2006;174(2):195–206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe S, Nagasaka K, Hirayama Y, Kozuka-Hata H, Oyama M, Aoyagi Y, et al. The initial phase of chromosome condensation requires Cdk1-mediated phosphorylation of the CAP-D3 subunit of condensin II. Genes Dev. 2011;25:863–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lenart P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, Hoffmann M, et al. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol. 2007;17:304–15.
Article
CAS
PubMed
Google Scholar
Kagami Y, Ono M, Yoshida K. Plk1 phosphorylation of CAP-H2 triggers chromosome condensation by condensin II at the early phase of mitosis. Sci Rep. 2017;7(1):5583.
Article
PubMed
PubMed Central
Google Scholar
Kagami Y, Nihira K, Wada S, Ono M, Honda M, Yoshida K. Mps1 phosphorylation of condensin II controls chromosome condensation at the onset of mitosis. J Cell Biol. 2014;205(6):781–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lipp JJ, Hirota T, Poser I, Peters JM. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J Cell Sci. 2007;120(Pt 7):1245–55.
Article
CAS
PubMed
Google Scholar
Nakazawa N, Mehrotra R, Ebe M, Yanagida M. Condensin phosphorylated by the Aurora-B-like kinase Ark1 is continuously required until telophase in a mode distinct from Top2. J Cell Sci. 2011;124:1795–807.
Article
CAS
PubMed
Google Scholar
St-Pierre J, Douziech M, Bazile F, Pascariu M, Bonneil E, Sauvé V, et al. Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol Cell. 2009;34(4):416–26.
Article
CAS
PubMed
Google Scholar
Wike CL, Graves HK, Hawkins R, Gibson MD, Ferdinand MB, Zhang T, et al. Aurora-A mediated histone H3 phosphorylation of threonine 118 controls condensin I and cohesin occupancy in mitosis. Elife. 2016;5:e11402.
Article
PubMed
PubMed Central
Google Scholar
Poonperm R, Takata H, Uchiyama S, Fukui K. Interdependency and phosphorylation of KIF4 and condensin I are essential for organization of chromosome scaffold. PLoS ONE. 2017;12(8):e0183298.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bazile F, St-Pierre J, D’Amours D. Three-step model for condensin activation during mitotic chromosome condensation. Cell Cycle. 2010;9:3243–55.
Article
CAS
PubMed
Google Scholar
Cabello OA, Eliseeva E, He WG, Youssoufian H, Plon SE, Brinkley BR, et al. Cell cycle-dependent expression and nucleolar localization of hCAP-H. Mol Biol Cell. 2001;12(11):3527–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang K, Jia J, Wu C, et al. Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem. 2013;288(36):26067–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Przewloka MR, Pardington PE, Yannone SM, Chen DJ, Cary RB. In vitro and in vivo interactions of DNA ligase IV with a subunit of the condensin complex. Mol Biol Cell. 2003;14(2):685–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heale JT, Jr Ball A R, Schmiesing JA, Kim JS, Kong X, Zhou S, et al. Condensin I interacts with the PARP-1-XRCC1 complex and functions in DNA single-strand break repair. Mol Cell. 2006;21(6):837–48.
Article
CAS
PubMed
Google Scholar
Kong X, Stephens J, Ball AR Jr, Heale JT, Newkirk DA, Berns MW, et al. Condensin I recruitment to base damage-enriched DNA lesions is modulated by PARP1. PLoS ONE. 2011;6(8):e23548.
Article
CAS
PubMed
PubMed Central
Google Scholar
George CM, Bozler J, Nguyen HQ, et al. Condensins are required for maintenance of nuclear architecture. Cells. 2014;3(3):865–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Henikoff S. Heterochromatin function in complex genomes. Biochim Biophys Acta. 2000;1470(1):01–8.
Google Scholar
Rawlings JS, Gatzka M, Thomas PG, Ihle JN. Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. EMBO J. 2011;30(2):263–76.
Article
CAS
PubMed
Google Scholar
Barnhart-Dailey MC, Trivedi P, Stukenberg PT, Foltz DR. HJURP interaction with the condensin II complex during G1 promotes CENP-A deposition. Mol Biol Cell. 2017;28(1):54–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ono T, Yamashita D, Hirano T. Condensin II initiates sister chromatid resolution during S phase. J Cell Biol. 2013;200(4):429–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet. 2004;75:261–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trimborn M, Schindler D, Neitzel H, Hirano T. Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II. Cell Cycle. 2006;5:322–6.
Article
CAS
PubMed
Google Scholar
Wood JL, Liang Y, Li K, et al. Microcephalin/MCPH1 associates with the condensin II complex to function in homologous recombination repair. J Biol Chem. 2008;283(43):29586–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamashita D, Shintomi K, Ono T, et al. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. J Cell Biol. 2011;194(6):841–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ward JR, Vasu K, Deutschman E, Halawani D, Larson PA, Zhang D, et al. Condensin II and GAIT complexes cooperate to restrict LINE-1 retrotransposition in epithelial cells. PLoS Genet. 2017;13(10):e1007051.
Article
PubMed
PubMed Central
Google Scholar
Geiman TM, Sankpal UT, Robertson AK, Chen Y, Mazumdar M, Heale JT, et al. Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. Nucleic Acids Res. 2004;32:2716–29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature. 2010;466:508–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuen KC, Slaughter BD, Gerton JL. Condensin II is anchored by TFIIIC and H3K4me3 in the mammalian genome and supports the expression of active dense gene clusters. Sci Adv. 2017;3(6):e1700191.
Article
PubMed
PubMed Central
Google Scholar
Zhang T, Si-Hoe SL, Hudson DF, Surana U. Condensin recruitment to chromatin is inhibited by Chk2 kinase in response to DNA damage. Cell Cycle. 2016;15(24):3454–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takemoto A, Kimura K, Yanagisawa J, Yokoyama S, Hanaoka F. Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J. 2006;25(22):5339–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ham MF, Takakuwa T, Rahadiani N, Tresnasari K, Nakajima H, Aozasa K. Condensin mutations and abnormal chromosomal structures in pyothorax-associated lymphoma. Cancer Sci. 2007;98(7):1041–7.
Article
CAS
PubMed
Google Scholar
Murakami-Tonami Y, Kishida S, Takeuchi I, Katou Y, Maris JM, Ichikawa H, et al. Inactivation of SMC2 shows a synergistic lethal response in MYCN-amplified neuroblastoma cells. Cell Cycle. 2014;13(7):1115–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Je EM, Yoo NJ, Lee SH. Mutational and expressional analysis of SMC2 gene in gastric and colorectal cancers with microsatellite instability. APMIS. 2014;122(6):499–504.
Article
CAS
PubMed
Google Scholar
Kar SP, Beesley J, Amin Al Olama A, Michailidou K, Tyrer J, Kote-Jarai Z, et al. Genome-wide meta-analyses of breast, ovarian, and prostate cancer association studies identify multiple new susceptibility loci shared by at least two cancer types. Cancer Discov. 2016;6(9):1052–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dávalos V, Súarez-López L, Castaño J, Messent A, Abasolo I, Fernandez Y, et al. Human SMC2 protein, a core subunit of human condensin complex, is a novel transcriptional target of the WNT signaling pathway and a new therapeutic target. J Biol Chem. 2012;287(52):43472–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chang H, Jeung HC, Jung JJ, Kim TS, Rha SY, Chung HC. Identification of genes associated with chemosensitivity to SAHA/taxane combination treatment in taxane-resistant breast cancer cells. Breast Cancer Res Treat. 2011;125:55–63.
Article
CAS
PubMed
Google Scholar
Zhou B, Yuan T, Liu M, Liu H, Xie J, Shen Y, et al. Overexpression of the structural maintenance of chromosome 4 protein is associated with tumor de-differentiation, advanced stage and vascular invasion of primary liver cancer. Oncol Rep. 2012;28(4):1263–8.
Article
CAS
PubMed
Google Scholar
Zhou B, Chen H, Wei D, Kuang Y, Zhao X, Li G, et al. A novel miR-219-SMC4-JAK2/Stat3 regulatory pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2014;33:55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feng XD, Song Q, Li CW, Chen J, Tang HM, Peng ZH, et al. Structural maintenance of chromosomes 4 is a predictor of survival and a novel therapeutic target in colorectal cancer. Asian Pac J Cancer Prev. 2014;15(21):9459–65.
Article
PubMed
Google Scholar
Jinushi T, Shibayama Y, Kinoshita I, Oizumi S, Jinushi M, Aota T, et al. Low expression levels of microRNA-124-5p correlated with poor prognosis in colorectal cancer via targeting of SMC4. Cancer Med. 2014;3(6):1544–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang C, Kuang M, Li M, Feng L, Zhang K, Cheng S. SMC4, which is essentially involved in lung development, is associated with lung adenocarcinoma progression. Sci Rep. 2016;6:34508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao SG, Evans JR, Kothari V, Sun G, Larm A, Mondine V, et al. The landscape of prognostic outlier genes in high-risk prostate cancer. Clin Cancer Res. 2016;22:1777–86.
Article
CAS
PubMed
Google Scholar
Jiang L, Zhou J, Zhong D, Zhou Y, Zhang W, Wu W, et al. Overexpression of SMC4 activates TGFβ/Smad signaling and promotes aggressive phenotype in glioma cells. Oncogenesis. 2017;6(3):e301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryu B, Kim DS, DeLuca AM, Alani RM. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression. PLoS ONE. 2007;2:e594.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin L, Jiang LP, Shen QS, Xiong QX, Zhuo X, Zhang LL, et al. NCAPH plays important roles in human colon cancer. Cell Death Dis. 2017;8(3):e2680.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang ML, Hsieh TH, Ng KH, Tsai YN, Tsai CF, Chao ME, et al. Downregulation of miR-137 and miR-6500-3p promotes cell proliferation in pediatric high-grade gliomas. Oncotarget. 2016;7(15):19723–37.
Article
PubMed
PubMed Central
Google Scholar
Liu W, Liang B, Liu H, Huang Y, Yin X, Zhou F, et al. Overexpression of non-SMC condensin I complex subunit G serves as a promising prognostic marker and therapeutic target for hepatocellular carcinoma. Int J Mol Med. 2017;40(3):731–8.
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Su R, Shan C, Gao C, Wu P. Non-SMC condensin I complex, subunit G (NCAPG) is a novel mitotic gene required for hepatocellular cancer cell proliferation and migration. Oncol Res. 2017. https://doi.org/10.3727/096504017X15075967560980.
Google Scholar
Goto Y, Kurozumi A, Arai T, Nohata N, Kojima S, Okato A, et al. Impact of novel miR-145-3p regulatory networks on survival in patients with castration-resistant prostate cancer. Br J Cancer. 2017;117(3):409–20.
Article
CAS
PubMed
Google Scholar
Cohen Y, Gutwein O, Garach-Jehoshua O, Bar-Haim A, Kornberg A. The proliferation arrest of primary tumor cells out-of-niche is associated with widespread downregulation of mitotic and transcriptional genes. Hematology. 2014;19:286–92.
Article
CAS
PubMed
Google Scholar
Lapointe J, Malhotra S, Higgins JP, Bair E, Thompson M, Salari K, et al. hCAP-D3 expression marks a prostate cancer subtype with favorable clinical behavior and androgen signaling signature. Am J Surg Pathol. 2008;32(2):205–9.
Article
PubMed
Google Scholar
Shiheido H, Naito Y, Kimura H, Genma H, Takashima H, Tokunaga M, et al. An anilinoquinazoline derivative inhibits tumor growth through interaction with hCAP-G2, a subunit of condensin II. PLoS ONE. 2012;7(9):e44889. https://doi.org/10.1371/journal.pone.0044889.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tokunaga M, Shiheido H, Tabata N, Sakuma-Yonemura Y, Takashima H, Horisawa K, et al. MIP-2A is a novel target of an anilinoquinazoline derivative for inhibition of tumour cell proliferation. PLoS ONE. 2013;8(9):e76774.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhan P, Xi GM, Zhang B, Wu Y, Liu HB, Liu YF, et al. NCAPG2 promotes tumour proliferation by regulating G2/M phase and associates with poor prognosis in lung adenocarcinoma. J Cell Mol Med. 2017;21(4):665–76.
Article
CAS
PubMed
Google Scholar
Law PJ, Sud A, Mitchell JS, Henrion M, Orlando G, Lenive O, et al. Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci. Sci Rep. 2017;7:41071.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watrin E, Legagneux V. Contribution of hCAP-D2, a non-SMC subunit of condensin I, to chromosome and chromosomal protein dynamics during mitosis. Mol Cell Biol. 2005;25(2):740–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kinoshita K, Kobayashi TJ, Hirano T. Balancing acts of two HEAT subunits of condensin I support dynamic assembly of chromosome axes. Dev Cell. 2015;33(1):94–106.
Article
CAS
PubMed
Google Scholar
Woodward J, Taylor GC, Soares DC, Boyle S, Sie D, Read D, et al. Condensin II mutation causes T-cell lymphoma through tissue-specific genome instability. Genes Dev. 2016;30(19):2173–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai Y, Nogales-Cadenas R, Zhang Q, Lin JR, Zhang W, O’Brien K, et al. Transcriptomic dynamics of breast cancer progression in the MMTV-PyMT mouse model. BMC Genom. 2017;18:185.
Article
Google Scholar
Andor N, Maley CC, Ji HP. Genomic instability in cancer: teetering on the limit of tolerance. Cancer Res. 2017;77(9):2179–85.
Article
CAS
PubMed
Google Scholar