Lengauer C, Kinzler KW, Vogelstein B: Genetic instabilities in human cancers. Nature 1998,396(6712):643–649. 10.1038/25292
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W, Whitehead CM, Reynolds C, Salisbury JL: Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 2002,99(4):1978–1983. 10.1073/pnas.032479999
ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Pihan GA, Doxsey SJ: The mitotic machinery as a source of genetic instability in cancer. Semin Cancer Biol 1999,9(4):289–302. 10.1006/scbi.1999.0131
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Fukasawa K: Centrosome amplification, chromosome instability and cancer development. Cancer Lett 2005,230(1):6–19. 10.1016/j.canlet.2004.12.028
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Lentini L, Pipitone L, Di Leonardo A: Functional inactivation of pRB results in aneuploid mammalian cells after release from a mitotic block. Neoplasia 2002,4(5):380–387. 10.1038/sj.neo.7900256
ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, Michel L, Mittal V, Gerald W, Benezra R, Lowe SW, Cordon-Cardo C: Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature 2004,430(7001):797–802. 10.1038/nature02820
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Iovino F, Lentini L, Amato A, Di Leonardo A: RB acute loss induces centrosome amplification and aneuploidy in murine primary fibroblasts. Mol Cancer 2006, 5: 38. 10.1186/1476-4598-5-38
ArticleÂ
PubMedÂ
PubMed CentralÂ
CASÂ
Google ScholarÂ
Herrera LA, Prada D, Andonegui MA, Duenas-Gonzalez A: The epigenetic origin of aneuploidy. Curr Genomics 2008,9(1):43–50. 10.2174/138920208783884883
ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Costello JF, Plass C: Methylation matters. J Med Genet 2001,38(5):285–303. 10.1136/jmg.38.5.285
ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Karpf AR, Matsui S: Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res 2005,65(19):8635–8639. 10.1158/0008-5472.CAN-05-1961
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Luczak MW, Jagodzinski PP: The role of DNA methylation in cancer development. Folia Histochem Cytobiol 2006,44(3):143–154.
CASÂ
PubMedÂ
Google ScholarÂ
Hervouet E, Lalier L, Debien E, Cheray M, Geairon A, Rogniaux H, Loussouarn D, Martin SA, Vallette FM, Cartron PF: Disruption of Dnmt1/PCNA/UHRF1 interactions promotes tumorigenesis from human and mice glial cells. PLoS One 2010,5(6):e11333. 10.1371/journal.pone.0011333
ArticleÂ
PubMedÂ
PubMed CentralÂ
CASÂ
Google ScholarÂ
Burri N, Shaw P, Bouzourene H, Sordat I, Sordat B, Gillet M, Schorderet D, Bosman FT, Chaubert P: Methylation silencing and mutations of the p14ARF and p16INK4a genes in colon cancer. Lab Invest 2001,81(2):217–229. 10.1038/labinvest.3780230
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
James SR, Link PA, Karpf AR: Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene 2006,25(52):6975–6985. 10.1038/sj.onc.1209678
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF: Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 1997,277(5334):1996–2000. 10.1126/science.277.5334.1996
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Wang S, El-Deiry WS: p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. Cancer research 2006,66(14):6982–6989. 10.1158/0008-5472.CAN-06-0511
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Easwaran HP, Schermelleh L, Leonhardt H, Cardoso MC: Replication-independent chromatin loading of Dnmt1 during G2 and M phases. EMBO Rep 2004,5(12):1181–1186. 10.1038/sj.embor.7400295
ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Bestor TH: The DNA methyltransferases of mammals. Hum Mol Genet 2000,9(16):2395–2402. 10.1093/hmg/9.16.2395
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Bird A: DNA methylation patterns and epigenetic memory. Genes Dev 2002,16(1):6–21. 10.1101/gad.947102
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Li E: Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002,3(9):662–673. 10.1038/nrg887
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Hermann A, Gowher H, Jeltsch A: Biochemistry and biology of mammalian DNA methyltransferases. Cell Mol Life Sci 2004,61(19–20):2571–2587. 10.1007/s00018-004-4201-1
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Robertson KD: DNA methylation and human disease. Nat Rev Genet 2005,6(8):597–610.
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Shvachko LP: DNA hypomethylation as Achilles' heel of tumorigenesis: a working hypothesis. Cell Biol Int 2009,33(8):904–910. 10.1016/j.cellbi.2009.02.018
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Costa FF, Paixao VA, Cavalher FP, Ribeiro KB, Cunha IW, Rinck JA Jr, O'Hare M, Mackay A, Soares FA, Brentani RR, Camargo AA: SATR-1 hypomethylation is a common and early event in breast cancer. Cancer Genet Cytogenet 2006,165(2):135–143. 10.1016/j.cancergencyto.2005.07.023
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Watanabe Y, Maekawa M: Methylation of DNA in cancer. Adv Clin Chem 2010, 52: 145–167.
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Zeimet AG, Fiegl H, Goebel G, Kopp F, Allasia C, Reimer D, Steppan I, Mueller-Holzner E, Ehrlich M, Marth C: DNA ploidy, nuclear size, proliferation index and DNA-hypomethylation in ovarian cancer. Gynecol Oncol 2011,121(1):24–31. 10.1016/j.ygyno.2010.12.332
ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Stimpson KM, Sullivan BA: Epigenomics of centromere assembly and function. Curr Opin Cell Biol 2010,22(6):772–780. 10.1016/j.ceb.2010.07.002
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Gieni RS, Chan GK, Hendzel MJ: Epigenetics regulate centromere formation and kinetochore function. J Cell Biochem 2008,104(6):2027–2039. 10.1002/jcb.21767
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
de Plater L, Lauge A, Guyader C, Poupon MF, Assayag F, de Cremoux P, Vincent-Salomon A, Stoppa-Lyonnet D, Sigal-Zafrani B, Fontaine JJ, Brough R, Lord CJ, Ashworth A, Cottu P, Decaudin D, Marangoni E: Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br J Cancer 2010,103(8):1192–1200. 10.1038/sj.bjc.6605900
ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Shukla V, Coumoul X, Lahusen T, Wang RH, Xu X, Vassilopoulos A, Xiao C, Lee MH, Man YG, Ouchi M, Ouchi T, Deng CX: BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res 2010,20(11):1201–1215. 10.1038/cr.2010.128
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
De Marzo AM, Marchi VL, Yang ES, Veeraswamy R, Lin X, Nelson WG: Abnormal regulation of DNA methyltransferase expression during colorectal carcinogenesis. Cancer Res 1999,59(16):3855–3860.
CASÂ
PubMedÂ
Google ScholarÂ
Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B: Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998,282(5393):1497–1501.
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Frame FM, Rogoff HA, Pickering MT, Cress WD, Kowalik TF: E2F1 induces MRN foci formation and a cell cycle checkpoint response in human fibroblasts. Oncogene 2006,25(23):3258–3266. 10.1038/sj.onc.1209352
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Vivo M, Di Costanzo A, Fortugno P, Pollice A, Calabro V, La Mantia G: Downregulation of DeltaNp63alpha in keratinocytes by p14ARF-mediated SUMO-conjugation and degradation. Cell Cycle 2009,8(21):3537–3543. 10.4161/cc.8.21.9935
ArticleÂ
Google ScholarÂ
Pereira MA, Wang W, Kramer PM, Tao L: DNA hypomethylation induced by non-genotoxic carcinogens in mouse and rat colon. Cancer Lett 2004,212(2):145–151. 10.1016/j.canlet.2004.03.024
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ